Step
*
1
1
1
of Lemma
reg-seq-inv_wf
1. b : ℕ+
2. x : ℕ+ ⟶ ℤ
3. b-regular-seq(x)
4. k : ℕ+
5. ∀m:ℕ+. ((2 * m) ≤ (k * |x m|))
6. ∀m:ℕ+. (¬((x m) = 0 ∈ ℤ))
7. reg-seq-inv(x) ∈ ℕ+ ⟶ ℤ
8. n : ℕ+
9. m : ℕ+
10. 0 < |x n|
11. 0 < |x m|
12. r1 : {r:ℤ| |r| < |x n|}
13. (4 * n * n rem x n) = r1 ∈ {r:ℤ| |r| < |x n|}
14. r2 : {r:ℤ| |r| < |x m|}
15. (4 * m * m rem x m) = r2 ∈ {r:ℤ| |r| < |x m|}
⊢ |((x m) * m * ((4 * n * n) - r1)) - (x n) * n * ((4 * m * m) - r2)| ≤ (|(x n) * (x m)|
* (2 * b * ((k * k) + 1))
* (n + m))
BY
{ ((Assert |((x m) * m * ((4 * n * n) - r1)) - (x n) * n * ((4 * m * m) - r2)| ≤ (|((x m) * m * 4 * n * n) - (x n)
* n
* 4
* m
* m|
+ |(x m) * m * (-r1)|
+ |(x n) * n * r2|) BY
(RepeatFor 2 ((RWO "int-triangle-inequality<" 0 THENA Auto)) THEN RW IntNormC 0 THEN Auto))
THEN (RWO "-1" 0 THENA Auto)
THEN (RepeatFor 2 (Thin (-1)) THEN Thin (-2))⋅) }
1
1. b : ℕ+
2. x : ℕ+ ⟶ ℤ
3. b-regular-seq(x)
4. k : ℕ+
5. ∀m:ℕ+. ((2 * m) ≤ (k * |x m|))
6. ∀m:ℕ+. (¬((x m) = 0 ∈ ℤ))
7. reg-seq-inv(x) ∈ ℕ+ ⟶ ℤ
8. n : ℕ+
9. m : ℕ+
10. 0 < |x n|
11. 0 < |x m|
12. r1 : {r:ℤ| |r| < |x n|}
13. r2 : {r:ℤ| |r| < |x m|}
⊢ (|((x m) * m * 4 * n * n) - (x n) * n * 4 * m * m| + |(x m) * m * (-r1)| + |(x n) * n * r2|) ≤ (|(x n) * (x m)|
* (2 * b * ((k * k) + 1))
* (n + m))
Latex:
Latex:
1. b : \mBbbN{}\msupplus{}
2. x : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
3. b-regular-seq(x)
4. k : \mBbbN{}\msupplus{}
5. \mforall{}m:\mBbbN{}\msupplus{}. ((2 * m) \mleq{} (k * |x m|))
6. \mforall{}m:\mBbbN{}\msupplus{}. (\mneg{}((x m) = 0))
7. reg-seq-inv(x) \mmember{} \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
8. n : \mBbbN{}\msupplus{}
9. m : \mBbbN{}\msupplus{}
10. 0 < |x n|
11. 0 < |x m|
12. r1 : \{r:\mBbbZ{}| |r| < |x n|\}
13. (4 * n * n rem x n) = r1
14. r2 : \{r:\mBbbZ{}| |r| < |x m|\}
15. (4 * m * m rem x m) = r2
\mvdash{} |((x m) * m * ((4 * n * n) - r1)) - (x n) * n * ((4 * m * m) - r2)| \mleq{} (|(x n) * (x m)|
* (2 * b * ((k * k) + 1))
* (n + m))
By
Latex:
((Assert |((x m) * m * ((4 * n * n) - r1)) - (x n) * n * ((4 * m * m) - r2)| \mleq{} (|((x m)
* m
* 4
* n
* n) - (x n)
* n
* 4
* m
* m|
+ |(x m) * m * (-r1)|
+ |(x n) * n * r2|) BY
(RepeatFor 2 ((RWO "int-triangle-inequality<" 0 THENA Auto)) THEN RW IntNormC 0 THEN Auto))
THEN (RWO "-1" 0 THENA Auto)
THEN (RepeatFor 2 (Thin (-1)) THEN Thin (-2))\mcdot{})
Home
Index