Nuprl Lemma : regular-iff-all-regular-upto
∀k:ℕ+. ∀x:ℕ+ ⟶ ℤ. (k-regular-seq(x)
⇐⇒ ∀b:ℕ+. (↑regular-upto(k;b;x)))
Proof
Definitions occuring in Statement :
regular-upto: regular-upto(k;n;f)
,
regular-int-seq: k-regular-seq(f)
,
nat_plus: ℕ+
,
assert: ↑b
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
function: x:A ⟶ B[x]
,
int: ℤ
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
rev_implies: P
⇐ Q
,
regular-int-seq: k-regular-seq(f)
,
nat_plus: ℕ+
,
prop: ℙ
,
nat: ℕ
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
guard: {T}
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
le: A ≤ B
,
less_than: a < b
,
squash: ↓T
,
subtract: n - m
Latex:
\mforall{}k:\mBbbN{}\msupplus{}. \mforall{}x:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}. (k-regular-seq(x) \mLeftarrow{}{}\mRightarrow{} \mforall{}b:\mBbbN{}\msupplus{}. (\muparrow{}regular-upto(k;b;x)))
Date html generated:
2020_05_20-AM-11_05_12
Last ObjectModification:
2020_03_14-AM-09_31_45
Theory : reals
Home
Index