Nuprl Lemma : regular-iff-all-regular-upto

k:ℕ+. ∀x:ℕ+ ⟶ ℤ.  (k-regular-seq(x) ⇐⇒ ∀b:ℕ+(↑regular-upto(k;b;x)))


Proof




Definitions occuring in Statement :  regular-upto: regular-upto(k;n;f) regular-int-seq: k-regular-seq(f) nat_plus: + assert: b all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B rev_implies:  Q regular-int-seq: k-regular-seq(f) nat_plus: + prop: nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False guard: {T} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T subtract: m

Latex:
\mforall{}k:\mBbbN{}\msupplus{}.  \mforall{}x:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.    (k-regular-seq(x)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}b:\mBbbN{}\msupplus{}.  (\muparrow{}regular-upto(k;b;x)))



Date html generated: 2020_05_20-AM-11_05_12
Last ObjectModification: 2020_03_14-AM-09_31_45

Theory : reals


Home Index