Step
*
1
1
3
of Lemma
regular-upto-iff
1. k : ℕ+
2. b : ℕ+
3. x : ℕ+ ⟶ ℤ
4. ∀i,j:ℕ+b + 1. (|(i * (x j)) - j * (x i)| ≤ ((2 * k) * (i + j)))
5. n : ℕ+b + 1
6. m : ℕ+b + 1
7. j : ℕ+b + 1
8. seq-min-upper(k;b;x) = j ∈ ℕ+b + 1
9. ((n * (x j)) - j * (x n)) ≤ ((2 * k) * (j - n))
10. ((m * (x j)) - j * (x m)) ≤ ((2 * k) * (j - m))
11. (((x n) - 2 * k) * (2 * k) * j) ≤ (((x j) + (2 * k)) * (2 * k) * n)
12. (((x j) + (2 * k)) * (2 * k) * n) ≤ (((x n) + (2 * k)) * (2 * k) * j)
⊢ (((x m) - 2 * k) * (2 * k) * j) ≤ (((x j) + (2 * k)) * (2 * k) * m)
BY
{ ((Assert ⌜(((x m) - 2 * k) * j) ≤ (((x j) + (2 * k)) * m)⌝⋅ THENM (Mul ⌜2 * k⌝ (-1)⋅ THEN Auto)) THEN Auto) }
1
.....assertion.....
1. k : ℕ+
2. b : ℕ+
3. x : ℕ+ ⟶ ℤ
4. ∀i,j:ℕ+b + 1. (|(i * (x j)) - j * (x i)| ≤ ((2 * k) * (i + j)))
5. n : ℕ+b + 1
6. m : ℕ+b + 1
7. j : ℕ+b + 1
8. seq-min-upper(k;b;x) = j ∈ ℕ+b + 1
9. ((n * (x j)) - j * (x n)) ≤ ((2 * k) * (j - n))
10. ((m * (x j)) - j * (x m)) ≤ ((2 * k) * (j - m))
11. (((x n) - 2 * k) * (2 * k) * j) ≤ (((x j) + (2 * k)) * (2 * k) * n)
12. (((x j) + (2 * k)) * (2 * k) * n) ≤ (((x n) + (2 * k)) * (2 * k) * j)
⊢ (((x m) - 2 * k) * j) ≤ (((x j) + (2 * k)) * m)
Latex:
Latex:
1. k : \mBbbN{}\msupplus{}
2. b : \mBbbN{}\msupplus{}
3. x : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
4. \mforall{}i,j:\mBbbN{}\msupplus{}b + 1. (|(i * (x j)) - j * (x i)| \mleq{} ((2 * k) * (i + j)))
5. n : \mBbbN{}\msupplus{}b + 1
6. m : \mBbbN{}\msupplus{}b + 1
7. j : \mBbbN{}\msupplus{}b + 1
8. seq-min-upper(k;b;x) = j
9. ((n * (x j)) - j * (x n)) \mleq{} ((2 * k) * (j - n))
10. ((m * (x j)) - j * (x m)) \mleq{} ((2 * k) * (j - m))
11. (((x n) - 2 * k) * (2 * k) * j) \mleq{} (((x j) + (2 * k)) * (2 * k) * n)
12. (((x j) + (2 * k)) * (2 * k) * n) \mleq{} (((x n) + (2 * k)) * (2 * k) * j)
\mvdash{} (((x m) - 2 * k) * (2 * k) * j) \mleq{} (((x j) + (2 * k)) * (2 * k) * m)
By
Latex:
((Assert \mkleeneopen{}(((x m) - 2 * k) * j) \mleq{} (((x j) + (2 * k)) * m)\mkleeneclose{}\mcdot{} THENM (Mul \mkleeneopen{}2 * k\mkleeneclose{} (-1)\mcdot{} THEN Auto))
THEN Auto
)
Home
Index