Nuprl Lemma : reqmatrix_inversion

[a,b:ℕ]. ∀[X,Y:ℝ(a × b)].  Y ≡ supposing X ≡ Y


Proof




Definitions occuring in Statement :  reqmatrix: X ≡ Y rmatrix: (a × b) nat: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  reqmatrix: X ≡ Y rmatrix: (a × b) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B nat: implies:  Q prop: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  int_seg_wf req_witness req_wf real_wf istype-nat req_weakening req_functionality
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut lambdaFormation_alt universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename productElimination hypothesis hypothesisEquality natural_numberEquality lambdaEquality_alt dependent_functionElimination applyEquality independent_functionElimination functionIsTypeImplies inhabitedIsType functionIsType isect_memberEquality_alt because_Cache isectIsTypeImplies independent_isectElimination

Latex:
\mforall{}[a,b:\mBbbN{}].  \mforall{}[X,Y:\mBbbR{}(a  \mtimes{}  b)].    Y  \mequiv{}  X  supposing  X  \mequiv{}  Y



Date html generated: 2019_10_30-AM-08_14_05
Last ObjectModification: 2019_09_19-AM-10_55_47

Theory : reals


Home Index