Nuprl Lemma : reqmatrix_weakening
∀[a,b:ℕ]. ∀[X,Y:ℝ(a × b)].  X ≡ Y supposing X = Y ∈ ℝ(a × b)
Proof
Definitions occuring in Statement : 
reqmatrix: X ≡ Y
, 
rmatrix: ℝ(a × b)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
reqmatrix: X ≡ Y
, 
rmatrix: ℝ(a × b)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
nat: ℕ
Lemmas referenced : 
req_wf, 
squash_wf, 
true_wf, 
real_wf, 
subtype_rel_self, 
iff_weakening_equal, 
req_weakening, 
int_seg_wf, 
req_witness, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
applyEquality, 
thin, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
inhabitedIsType, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
because_Cache, 
setElimination, 
rename, 
dependent_functionElimination, 
functionIsTypeImplies, 
equalityIstype, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
functionIsType
Latex:
\mforall{}[a,b:\mBbbN{}].  \mforall{}[X,Y:\mBbbR{}(a  \mtimes{}  b)].    X  \mequiv{}  Y  supposing  X  =  Y
Date html generated:
2019_10_30-AM-08_13_39
Last ObjectModification:
2019_09_19-AM-10_53_35
Theory : reals
Home
Index