Nuprl Lemma : reqmatrix_weakening

[a,b:ℕ]. ∀[X,Y:ℝ(a × b)].  X ≡ supposing Y ∈ ℝ(a × b)


Proof




Definitions occuring in Statement :  reqmatrix: X ≡ Y rmatrix: (a × b) nat: uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  reqmatrix: X ≡ Y rmatrix: (a × b) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B nat:
Lemmas referenced :  req_wf squash_wf true_wf real_wf subtype_rel_self iff_weakening_equal req_weakening int_seg_wf req_witness istype-nat
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut lambdaFormation_alt applyEquality thin lambdaEquality_alt sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType inhabitedIsType natural_numberEquality imageMemberEquality baseClosed instantiate universeEquality independent_isectElimination productElimination independent_functionElimination because_Cache setElimination rename dependent_functionElimination functionIsTypeImplies equalityIstype isect_memberEquality_alt isectIsTypeImplies functionIsType

Latex:
\mforall{}[a,b:\mBbbN{}].  \mforall{}[X,Y:\mBbbR{}(a  \mtimes{}  b)].    X  \mequiv{}  Y  supposing  X  =  Y



Date html generated: 2019_10_30-AM-08_13_39
Last ObjectModification: 2019_09_19-AM-10_53_35

Theory : reals


Home Index