Nuprl Lemma : retraction_wf

[X,A:Type]. ∀[d:metric(X)].  retraction(X;d;A) ∈ Type supposing A ⊆X


Proof




Definitions occuring in Statement :  retraction: retraction(X;d;A) metric: metric(X) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  all: x:A. B[x] prop: subtype_rel: A ⊆B and: P ∧ Q retraction: retraction(X;d;A) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe metric_wf subtype_rel_wf meq_wf metric-on-subtype is-mfun_wf
Rules used in proof :  universeEquality instantiate inhabitedIsType isectIsTypeImplies isect_memberEquality_alt universeIsType equalitySymmetry equalityTransitivity axiomEquality hypothesis independent_isectElimination applyEquality thin isectElimination sqequalHypSubstitution extract_by_obid productEquality hypothesisEquality functionEquality setEquality sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X,A:Type].  \mforall{}[d:metric(X)].    retraction(X;d;A)  \mmember{}  Type  supposing  A  \msubseteq{}r  X



Date html generated: 2019_10_30-AM-06_36_47
Last ObjectModification: 2019_10_26-PM-00_02_21

Theory : reals


Home Index