Nuprl Lemma : rfun_subtype
∀[I,J:Interval].  I ⟶ℝ ⊆r J ⟶ℝ supposing J ⊆ I 
Proof
Definitions occuring in Statement : 
subinterval: I ⊆ J 
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
rfun: I ⟶ℝ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subinterval: I ⊆ J 
Lemmas referenced : 
subtype_rel_dep_function, 
real_wf, 
i-member_wf, 
subtype_rel_sets, 
subtype_rel_self, 
set_wf, 
subinterval_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
independent_isectElimination, 
because_Cache, 
setElimination, 
rename, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[I,J:Interval].    I  {}\mrightarrow{}\mBbbR{}  \msubseteq{}r  J  {}\mrightarrow{}\mBbbR{}  supposing  J  \msubseteq{}  I 
Date html generated:
2016_05_18-AM-08_51_29
Last ObjectModification:
2015_12_27-PM-11_42_51
Theory : reals
Home
Index