Nuprl Lemma : rfun_subtype

[I,J:Interval].  I ⟶ℝ ⊆J ⟶ℝ supposing J ⊆ 


Proof




Definitions occuring in Statement :  subinterval: I ⊆  rfun: I ⟶ℝ interval: Interval uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  rfun: I ⟶ℝ uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B all: x:A. B[x] implies:  Q subinterval: I ⊆ 
Lemmas referenced :  subtype_rel_dep_function real_wf i-member_wf subtype_rel_sets subtype_rel_self set_wf subinterval_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesis hypothesisEquality lambdaEquality independent_isectElimination because_Cache setElimination rename lambdaFormation dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[I,J:Interval].    I  {}\mrightarrow{}\mBbbR{}  \msubseteq{}r  J  {}\mrightarrow{}\mBbbR{}  supposing  J  \msubseteq{}  I 



Date html generated: 2016_05_18-AM-08_51_29
Last ObjectModification: 2015_12_27-PM-11_42_51

Theory : reals


Home Index