Step
*
2
1
of Lemma
rinv_wf
1. x : ℝ
2. ∃n:ℕ+. 4 < |x n|
⊢ eval n = mu-ge(λn.4 <z |x n|;1) in
if (n =z 1)
then accelerate(5;reg-seq-inv(x))
else accelerate(4 * ((4 * n * n) + 1);reg-seq-inv(reg-seq-adjust(n;x)))
fi ∈ ℝ
BY
{ ((Assert ∃n:{1...}. (↑4 <z |x n|) BY
(ExRepD THEN With ⌜n⌝ (D 0)⋅ THEN Auto))
THEN (InstLemma `mu-ge-property` [⌜1⌝;⌜λn.4 <z |x n|⌝]⋅ THENA Auto)
THEN Reduce (-1)
THEN MoveToConcl (-1)
THEN (GenConclTerm ⌜mu-ge(λn.4 <z |x n|;1)⌝⋅ THENA Auto)
THEN RepeatFor 2 (Thin 2)
THEN RenameVar `a' 2
THEN (D 0 THENA Auto)
THEN (D -1 THEN (RW assert_pushdownC (-2) THENA Auto))
THEN ((Assert ∀[i:ℕ+a]. (¬4 < |x i|) BY (ParallelLast THEN RW assert_pushdownC (-1) THEN Auto)) THEN Thin (-2))
THEN InstLemma `rnonzero-lemma1` [⌜x⌝;⌜a⌝]⋅
THEN Auto)⋅ }
1
1. x : ℝ
2. a : {1...}
3. mu-ge(λn.4 <z |x n|;1) = a ∈ {1...}
4. 4 < |x a|
5. ∀[i:ℕ+a]. (¬4 < |x i|)
6. ∀m:ℕ+. ((a ≤ m)
⇒ (m ≤ (a * |x m|)))
7. a = 1 ∈ ℤ
⊢ reg-seq-inv(x) ∈ {f:ℕ+ ⟶ ℤ| 5-regular-seq(f)}
2
1. x : ℝ
2. a : {2...}
3. mu-ge(λn.4 <z |x n|;1) = a ∈ {1...}
4. 4 < |x a|
5. ∀[i:ℕ+a]. (¬4 < |x i|)
6. ∀m:ℕ+. ((a ≤ m)
⇒ (m ≤ (a * |x m|)))
⊢ reg-seq-inv(reg-seq-adjust(a;x)) ∈ {f:ℕ+ ⟶ ℤ| 4 * ((4 * a * a) + 1)-regular-seq(f)}
Latex:
Latex:
1. x : \mBbbR{}
2. \mexists{}n:\mBbbN{}\msupplus{}. 4 < |x n|
\mvdash{} eval n = mu-ge(\mlambda{}n.4 <z |x n|;1) in
if (n =\msubz{} 1)
then accelerate(5;reg-seq-inv(x))
else accelerate(4 * ((4 * n * n) + 1);reg-seq-inv(reg-seq-adjust(n;x)))
fi \mmember{} \mBbbR{}
By
Latex:
((Assert \mexists{}n:\{1...\}. (\muparrow{}4 <z |x n|) BY
(ExRepD THEN With \mkleeneopen{}n\mkleeneclose{} (D 0)\mcdot{} THEN Auto))
THEN (InstLemma `mu-ge-property` [\mkleeneopen{}1\mkleeneclose{};\mkleeneopen{}\mlambda{}n.4 <z |x n|\mkleeneclose{}]\mcdot{} THENA Auto)
THEN Reduce (-1)
THEN MoveToConcl (-1)
THEN (GenConclTerm \mkleeneopen{}mu-ge(\mlambda{}n.4 <z |x n|;1)\mkleeneclose{}\mcdot{} THENA Auto)
THEN RepeatFor 2 (Thin 2)
THEN RenameVar `a' 2
THEN (D 0 THENA Auto)
THEN (D -1 THEN (RW assert\_pushdownC (-2) THENA Auto))
THEN ((Assert \mforall{}[i:\mBbbN{}\msupplus{}a]. (\mneg{}4 < |x i|) BY
(ParallelLast THEN RW assert\_pushdownC (-1) THEN Auto))
THEN Thin (-2)
)
THEN InstLemma `rnonzero-lemma1` [\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{}]\mcdot{}
THEN Auto)\mcdot{}
Home
Index