Nuprl Lemma : rleq-infn

[I:{I:Interval| icompact(I)} ]
  ∀n:ℕ. ∀f:{f:I^n ⟶ ℝ| ∀a,b:I^n.  (req-vec(n;a;b)  ((f a) (f b)))} . ∀c:ℝ.
    c ≤ (infn(n;I) f) supposing ∀a:I^n. (c ≤ (f a))


Proof




Definitions occuring in Statement :  infn: infn(n;I) interval-vec: I^n req-vec: req-vec(n;x;y) icompact: icompact(I) interval: Interval rleq: x ≤ y req: y real: nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B less_than': less_than'(a;b) interval-vec: I^n decidable: Dec(P) or: P ∨ Q infn: infn(n;I) lelt: i ≤ j < k int_seg: {i..j-} real-vec: ^n subtype_rel: A ⊆B top: Top guard: {T} sq_type: SQType(T) subtract: m squash: T sq_stable: SqStable(P) cand: c∧ B nat_plus: + uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q so_lambda: λ2x.t[x] so_apply: x[s] req-vec: req-vec(n;x;y) real-vec-extend: a++z

Latex:
\mforall{}[I:\{I:Interval|  icompact(I)\}  ]
    \mforall{}n:\mBbbN{}.  \mforall{}f:\{f:I\^{}n  {}\mrightarrow{}  \mBbbR{}|  \mforall{}a,b:I\^{}n.    (req-vec(n;a;b)  {}\mRightarrow{}  ((f  a)  =  (f  b)))\}  .  \mforall{}c:\mBbbR{}.
        c  \mleq{}  (infn(n;I)  f)  supposing  \mforall{}a:I\^{}n.  (c  \mleq{}  (f  a))



Date html generated: 2020_05_20-PM-00_39_29
Last ObjectModification: 2020_01_06-PM-10_03_35

Theory : reals


Home Index