Step
*
1
1
of Lemma
rless-iff8
1. x : ℝ
2. y : ℝ
3. n : ℕ+
4. (x n) + 4 < y n
5. m : ℤ
6. ((12 * n) + 1) = m ∈ ℤ
⊢ (x m) + 8 < y m
BY
{ ((Assert |(m * (x n)) - n * (x m)| ≤ (2 * (n + m)) BY
(D 1 THEN Unhide THEN Auto))
THEN (Assert |(m * (y n)) - n * (y m)| ≤ (2 * (n + m)) BY
(D 2 THEN Unhide THEN Auto))
) }
1
1. x : ℝ
2. y : ℝ
3. n : ℕ+
4. (x n) + 4 < y n
5. m : ℤ
6. ((12 * n) + 1) = m ∈ ℤ
7. |(m * (x n)) - n * (x m)| ≤ (2 * (n + m))
8. |(m * (y n)) - n * (y m)| ≤ (2 * (n + m))
⊢ (x m) + 8 < y m
Latex:
Latex:
1. x : \mBbbR{}
2. y : \mBbbR{}
3. n : \mBbbN{}\msupplus{}
4. (x n) + 4 < y n
5. m : \mBbbZ{}
6. ((12 * n) + 1) = m
\mvdash{} (x m) + 8 < y m
By
Latex:
((Assert |(m * (x n)) - n * (x m)| \mleq{} (2 * (n + m)) BY
(D 1 THEN Unhide THEN Auto))
THEN (Assert |(m * (y n)) - n * (y m)| \mleq{} (2 * (n + m)) BY
(D 2 THEN Unhide THEN Auto))
)
Home
Index