Nuprl Lemma : rmin-i-member

I:Interval. ∀a,b:ℝ.  ((a ∈ I)  (b ∈ I)  (rmin(a;b) ∈ I))


Proof




Definitions occuring in Statement :  i-member: r ∈ I interval: Interval rmin: rmin(x;y) real: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] interval: Interval i-member: r ∈ I implies:  Q and: P ∧ Q cand: c∧ B member: t ∈ T iff: ⇐⇒ Q uall: [x:A]. B[x] uimplies: supposing a or: P ∨ Q prop: true: True
Lemmas referenced :  rmin_ub rmin_lb rleq_wf and_wf real_wf rmin_strict_ub rless_wf rmin_strict_lb true_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin unionElimination sqequalRule cut lemma_by_obid dependent_functionElimination hypothesisEquality because_Cache independent_functionElimination hypothesis independent_pairFormation isectElimination independent_isectElimination inlFormation natural_numberEquality

Latex:
\mforall{}I:Interval.  \mforall{}a,b:\mBbbR{}.    ((a  \mmember{}  I)  {}\mRightarrow{}  (b  \mmember{}  I)  {}\mRightarrow{}  (rmin(a;b)  \mmember{}  I))



Date html generated: 2016_05_18-AM-08_47_53
Last ObjectModification: 2015_12_27-PM-11_47_02

Theory : reals


Home Index