Nuprl Lemma : rmin-i-member
∀I:Interval. ∀a,b:ℝ.  ((a ∈ I) 
⇒ (b ∈ I) 
⇒ (rmin(a;b) ∈ I))
Proof
Definitions occuring in Statement : 
i-member: r ∈ I
, 
interval: Interval
, 
rmin: rmin(x;y)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
interval: Interval
, 
i-member: r ∈ I
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
prop: ℙ
, 
true: True
Lemmas referenced : 
rmin_ub, 
rmin_lb, 
rleq_wf, 
and_wf, 
real_wf, 
rmin_strict_ub, 
rless_wf, 
rmin_strict_lb, 
true_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
unionElimination, 
sqequalRule, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
because_Cache, 
independent_functionElimination, 
hypothesis, 
independent_pairFormation, 
isectElimination, 
independent_isectElimination, 
inlFormation, 
natural_numberEquality
Latex:
\mforall{}I:Interval.  \mforall{}a,b:\mBbbR{}.    ((a  \mmember{}  I)  {}\mRightarrow{}  (b  \mmember{}  I)  {}\mRightarrow{}  (rmin(a;b)  \mmember{}  I))
Date html generated:
2016_05_18-AM-08_47_53
Last ObjectModification:
2015_12_27-PM-11_47_02
Theory : reals
Home
Index