Step
*
1
of Lemma
rmin-lb-convex
1. a : ℝ
2. b : ℝ
3. t : ℝ
4. r0 ≤ t
5. t ≤ r1
⊢ rmin(a;b) ≤ ((t * a) + ((r1 - t) * b))
BY
{ ((Assert (t * rmin(a;b)) ≤ (t * a) BY
((Assert rmin(a;b) ≤ a BY Auto) THEN nRMul ⌜t⌝ (-1)⋅ THEN Auto))
THEN (Assert ((r1 - t) * rmin(a;b)) ≤ ((r1 - t) * b) BY
((Assert rmin(a;b) ≤ b BY Auto) THEN nRMul ⌜r1 - t⌝ (-1)⋅ THEN Auto))
THEN RWO "-1< -2<" 0
THEN Auto) }
Latex:
Latex:
1. a : \mBbbR{}
2. b : \mBbbR{}
3. t : \mBbbR{}
4. r0 \mleq{} t
5. t \mleq{} r1
\mvdash{} rmin(a;b) \mleq{} ((t * a) + ((r1 - t) * b))
By
Latex:
((Assert (t * rmin(a;b)) \mleq{} (t * a) BY
((Assert rmin(a;b) \mleq{} a BY Auto) THEN nRMul \mkleeneopen{}t\mkleeneclose{} (-1)\mcdot{} THEN Auto))
THEN (Assert ((r1 - t) * rmin(a;b)) \mleq{} ((r1 - t) * b) BY
((Assert rmin(a;b) \mleq{} b BY Auto) THEN nRMul \mkleeneopen{}r1 - t\mkleeneclose{} (-1)\mcdot{} THEN Auto))
THEN RWO "-1< -2<" 0
THEN Auto)
Home
Index