Nuprl Lemma : rmin-lb-convex

a,b,t:ℝ.  ((r0 ≤ t)  (t ≤ r1)  (rmin(a;b) ≤ ((t a) ((r1 t) b))))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rmin: rmin(x;y) rsub: y rmul: b radd: b int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] and: P ∧ Q uimplies: supposing a uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y guard: {T}
Lemmas referenced :  rleq_wf int-to-real_wf real_wf rmin-rleq rmul_preserves_rleq2 rmin_wf rleq-implies-rleq rmul_wf rsub_wf rleq_functionality radd_wf rminus_wf itermSubtract_wf itermMultiply_wf itermVar_wf req-iff-rsub-is-0 itermConstant_wf itermAdd_wf itermMinus_wf rleq_weakening real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma real_term_value_add_lemma real_term_value_minus_lemma rleq_functionality_wrt_implies rleq_weakening_equal radd_functionality_wrt_rleq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality hypothesis productElimination independent_isectElimination because_Cache sqequalRule dependent_functionElimination approximateComputation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}a,b,t:\mBbbR{}.    ((r0  \mleq{}  t)  {}\mRightarrow{}  (t  \mleq{}  r1)  {}\mRightarrow{}  (rmin(a;b)  \mleq{}  ((t  *  a)  +  ((r1  -  t)  *  b))))



Date html generated: 2018_05_22-PM-01_32_24
Last ObjectModification: 2017_10_20-PM-04_49_16

Theory : reals


Home Index