Nuprl Lemma : rmin-req-rminus-rmax
∀[x,y:ℝ].  (rmin(x;y) = -(rmax(-(x);-(y))))
Proof
Definitions occuring in Statement : 
rmin: rmin(x;y)
, 
rmax: rmax(x;y)
, 
req: x = y
, 
rminus: -(x)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rmin_wf, 
rminus_wf, 
rmax_wf, 
real_wf, 
req_weakening, 
req_functionality, 
req_transitivity, 
rminus-rmax, 
rmin_functionality, 
rminus-rminus
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[x,y:\mBbbR{}].    (rmin(x;y)  =  -(rmax(-(x);-(y))))
Date html generated:
2016_05_18-AM-06_59_38
Last ObjectModification:
2015_12_28-AM-00_32_43
Theory : reals
Home
Index