Nuprl Lemma : rmin-req-rminus-rmax

[x,y:ℝ].  (rmin(x;y) -(rmax(-(x);-(y))))


Proof




Definitions occuring in Statement :  rmin: rmin(x;y) rmax: rmax(x;y) req: y rminus: -(x) real: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rmin_wf rminus_wf rmax_wf real_wf req_weakening req_functionality req_transitivity rminus-rmax rmin_functionality rminus-rminus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination sqequalRule isect_memberEquality because_Cache independent_isectElimination productElimination

Latex:
\mforall{}[x,y:\mBbbR{}].    (rmin(x;y)  =  -(rmax(-(x);-(y))))



Date html generated: 2016_05_18-AM-06_59_38
Last ObjectModification: 2015_12_28-AM-00_32_43

Theory : reals


Home Index