Nuprl Lemma : rminus-rmax

[x,y:ℝ].  (-(rmax(x;y)) rmin(-(x);-(y)))


Proof




Definitions occuring in Statement :  rmin: rmin(x;y) rmax: rmax(x;y) req: y rminus: -(x) real: uall: [x:A]. B[x]
Definitions unfolded in proof :  subtract: m rev_implies:  Q iff: ⇐⇒ Q nat: subtype_rel: A ⊆B absval: |i| decidable: Dec(P) le: A ≤ B squash: T less_than': less_than'(a;b) less_than: a < b top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) nat_plus: + not: ¬A false: False assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q prop: exists: x:A. B[x] bfalse: ff ifthenelse: if then else fi  uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 true: True real: implies:  Q rmax: rmax(x;y) rmin: rmin(x;y) rminus: -(x) all: x:A. B[x] req: y member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  zero-mul add-mul-special add-commutes minus-minus minus-one-mul iff_weakening_equal subtype_rel_self imin_unfold imax_unfold minus_functionality_wrt_eq subtract_wf true_wf squash_wf nat_wf absval_wf false_wf int_formula_prop_less_lemma intformless_wf int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_add_lemma itermConstant_wf itermMultiply_wf itermAdd_wf decidable__le top_wf assert_of_lt_int lt_int_wf absval_unfold int_formula_prop_wf int_term_value_minus_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermMinus_wf itermVar_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat less_than_wf nat_plus_properties le_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert assert_of_le_int eqtt_to_assert bool_wf le_int_wf ifthenelse_wf imax_wf real_wf rmin_wf rmax_wf rminus_wf req_witness nat_plus_wf
Rules used in proof :  universeEquality imageElimination baseClosed imageMemberEquality sqequalAxiom lessCases multiplyEquality addEquality independent_pairFormation voidEquality int_eqEquality lambdaEquality approximateComputation dependent_set_memberEquality voidElimination cumulativity instantiate dependent_functionElimination promote_hyp dependent_pairFormation independent_isectElimination productElimination equalitySymmetry equalityTransitivity equalityElimination unionElimination natural_numberEquality minusEquality intEquality rename setElimination applyEquality because_Cache isect_memberEquality independent_functionElimination hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis extract_by_obid sqequalRule lambdaFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[x,y:\mBbbR{}].    (-(rmax(x;y))  =  rmin(-(x);-(y)))



Date html generated: 2018_05_22-PM-01_21_00
Last ObjectModification: 2018_05_21-AM-00_05_08

Theory : reals


Home Index