Step
*
1
2
1
1
1
of Lemma
rminimum-cases
1. n : ℤ
2. d : ℤ
3. 0 < d
4. ∀x:{n..(n + (d - 1)) + 1-} ⟶ ℝ
(¬¬(∃a:{n..(n + (d - 1)) + 1-}
((primrec(d - 1;x[n];λi,s. rmin(s;x[n + i + 1])) = x[a]) ∧ (∀j:{n..(n + (d - 1)) + 1-}. (x[a] ≤ x[j])))))
5. 1 ≤ d
6. x : {n..(n + d) + 1-} ⟶ ℝ
7. a : {n..(n + (d - 1)) + 1-}
8. primrec(d - 1;x[n];λi,s. rmin(s;x[n + i + 1])) = x[a]
9. ∀j:{n..(n + (d - 1)) + 1-}. (x[a] ≤ x[j])
10. x[a] < x[n + d]
⊢ rmin(primrec(d - 1;x[n];λi,s. rmin(s;x[n + i + 1]));x[n + (d - 1) + 1]) = x[a]
BY
{ (RWO "8" 0 THEN Auto) }
1
1. n : ℤ
2. d : ℤ
3. 0 < d
4. ∀x:{n..(n + (d - 1)) + 1-} ⟶ ℝ
(¬¬(∃a:{n..(n + (d - 1)) + 1-}
((primrec(d - 1;x[n];λi,s. rmin(s;x[n + i + 1])) = x[a]) ∧ (∀j:{n..(n + (d - 1)) + 1-}. (x[a] ≤ x[j])))))
5. 1 ≤ d
6. x : {n..(n + d) + 1-} ⟶ ℝ
7. a : {n..(n + (d - 1)) + 1-}
8. primrec(d - 1;x[n];λi,s. rmin(s;x[n + i + 1])) = x[a]
9. ∀j:{n..(n + (d - 1)) + 1-}. (x[a] ≤ x[j])
10. x[a] < x[n + d]
⊢ rmin(x[a];x[n + (d - 1) + 1]) = x[a]
Latex:
Latex:
1. n : \mBbbZ{}
2. d : \mBbbZ{}
3. 0 < d
4. \mforall{}x:\{n..(n + (d - 1)) + 1\msupminus{}\} {}\mrightarrow{} \mBbbR{}
(\mneg{}\mneg{}(\mexists{}a:\{n..(n + (d - 1)) + 1\msupminus{}\}
((primrec(d - 1;x[n];\mlambda{}i,s. rmin(s;x[n + i + 1])) = x[a])
\mwedge{} (\mforall{}j:\{n..(n + (d - 1)) + 1\msupminus{}\}. (x[a] \mleq{} x[j])))))
5. 1 \mleq{} d
6. x : \{n..(n + d) + 1\msupminus{}\} {}\mrightarrow{} \mBbbR{}
7. a : \{n..(n + (d - 1)) + 1\msupminus{}\}
8. primrec(d - 1;x[n];\mlambda{}i,s. rmin(s;x[n + i + 1])) = x[a]
9. \mforall{}j:\{n..(n + (d - 1)) + 1\msupminus{}\}. (x[a] \mleq{} x[j])
10. x[a] < x[n + d]
\mvdash{} rmin(primrec(d - 1;x[n];\mlambda{}i,s. rmin(s;x[n + i + 1]));x[n + (d - 1) + 1]) = x[a]
By
Latex:
(RWO "8" 0 THEN Auto)
Home
Index