Step
*
1
1
2
of Lemma
rminimum-split
.....upcase.....
1. n : ℤ
2. i : ℕ
3. j : ℤ
4. 0 < j
5. ∀X:{n..(n + i + (j - 1)) + 2-} ⟶ ℝ. ∀v:ℝ.
(primrec(j - 1;rmin(v;X[n + (0 + i) + 1]);λi1,t. rmin(t;X[n + ((i1 + 1) + i) + 1]))
= rmin(v;primrec(j - 1;X[(n + i) + 1];λi@0,s. rmin(s;X[((n + i) + 1) + i@0 + 1]))))
⊢ ∀X:{n..(n + i + j) + 2-} ⟶ ℝ. ∀v:ℝ.
(primrec(j;rmin(v;X[n + (0 + i) + 1]);λi1,t. rmin(t;X[n + ((i1 + 1) + i) + 1]))
= rmin(v;primrec(j;X[(n + i) + 1];λi@0,s. rmin(s;X[((n + i) + 1) + i@0 + 1]))))
BY
{ RepeatFor 2 (ParallelLast) }
1
1. n : ℤ
2. i : ℕ
3. j : ℤ
4. 0 < j
5. X : {n..(n + i + j) + 2-} ⟶ ℝ
6. v : ℝ
7. primrec(j - 1;rmin(v;X[n + (0 + i) + 1]);λi1,t. rmin(t;X[n + ((i1 + 1) + i) + 1]))
= rmin(v;primrec(j - 1;X[(n + i) + 1];λi@0,s. rmin(s;X[((n + i) + 1) + i@0 + 1])))
⊢ primrec(j;rmin(v;X[n + (0 + i) + 1]);λi1,t. rmin(t;X[n + ((i1 + 1) + i) + 1]))
= rmin(v;primrec(j;X[(n + i) + 1];λi@0,s. rmin(s;X[((n + i) + 1) + i@0 + 1])))
Latex:
Latex:
.....upcase.....
1. n : \mBbbZ{}
2. i : \mBbbN{}
3. j : \mBbbZ{}
4. 0 < j
5. \mforall{}X:\{n..(n + i + (j - 1)) + 2\msupminus{}\} {}\mrightarrow{} \mBbbR{}. \mforall{}v:\mBbbR{}.
(primrec(j - 1;rmin(v;X[n + (0 + i) + 1]);\mlambda{}i1,t. rmin(t;X[n + ((i1 + 1) + i) + 1]))
= rmin(v;primrec(j - 1;X[(n + i) + 1];\mlambda{}i@0,s. rmin(s;X[((n + i) + 1) + i@0 + 1]))))
\mvdash{} \mforall{}X:\{n..(n + i + j) + 2\msupminus{}\} {}\mrightarrow{} \mBbbR{}. \mforall{}v:\mBbbR{}.
(primrec(j;rmin(v;X[n + (0 + i) + 1]);\mlambda{}i1,t. rmin(t;X[n + ((i1 + 1) + i) + 1]))
= rmin(v;primrec(j;X[(n + i) + 1];\mlambda{}i@0,s. rmin(s;X[((n + i) + 1) + i@0 + 1]))))
By
Latex:
RepeatFor 2 (ParallelLast)
Home
Index