Nuprl Lemma : rn-metric-sep

n:ℕ. ∀x,y:ℝ^n.  (r0 < mdist(rn-metric(n);x;y) ⇐⇒ ∃i:ℕn. i ≠ i)


Proof




Definitions occuring in Statement :  rn-metric: rn-metric(n) real-vec: ^n mdist: mdist(d;x;y) rneq: x ≠ y rless: x < y int-to-real: r(n) int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q apply: a natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] rn-metric: rn-metric(n) mdist: mdist(d;x;y) real-vec-sep: a ≠ b iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q exists: x:A. B[x] nat: real-vec: ^n
Lemmas referenced :  real-vec-sep-iff-rneq real-vec-sep_wf int_seg_wf rneq_wf real-vec_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalRule independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination independent_functionElimination hypothesis universeIsType isectElimination productIsType natural_numberEquality setElimination rename applyEquality because_Cache

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbR{}\^{}n.    (r0  <  mdist(rn-metric(n);x;y)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}i:\mBbbN{}n.  x  i  \mneq{}  y  i)



Date html generated: 2019_10_30-AM-08_43_16
Last ObjectModification: 2019_10_02-AM-10_26_17

Theory : reals


Home Index