Step
*
1
of Lemma
rnexp-convex
1. a : ℝ
2. b : ℝ
3. r0 ≤ b
4. b ≤ a
5. n : ℤ
6. 0 < n
7. a - b^n ≤ (a^n - b^n)
⊢ ((a^n - b^n) * (a - b)) ≤ ((a^n * a) - b^n * b)
BY
{ (nRNorm 0 THEN Auto) }
1
1. a : ℝ
2. b : ℝ
3. r0 ≤ b
4. b ≤ a
5. n : ℤ
6. 0 < n
7. a - b^n ≤ (a^n - b^n)
⊢ ((a^n * a) + -(a^n * b) + -(b^n * a) + (b^n * b)) ≤ ((a^n * a) + -(b^n * b))
Latex:
Latex:
1. a : \mBbbR{}
2. b : \mBbbR{}
3. r0 \mleq{} b
4. b \mleq{} a
5. n : \mBbbZ{}
6. 0 < n
7. a - b\^{}n \mleq{} (a\^{}n - b\^{}n)
\mvdash{} ((a\^{}n - b\^{}n) * (a - b)) \mleq{} ((a\^{}n * a) - b\^{}n * b)
By
Latex:
(nRNorm 0 THEN Auto)
Home
Index