Nuprl Lemma : rsum'_wf

[n,m:ℤ]. ∀[x:{n..m 1-} ⟶ ℝ].  (rsum'(n;m;k.x[k]) ∈ ℝ)


Proof




Definitions occuring in Statement :  rsum': rsum'(n;m;k.x[k]) real: int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real: prop: so_lambda: λ2x.t[x] so_apply: x[s] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q
Lemmas referenced :  int_seg_wf real_wf rsum'-eq-rsum regular-int-seq_wf nat_plus_wf real-regular rsum_wf less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry functionEquality extract_by_obid isectElimination thin hypothesisEquality addEquality natural_numberEquality isect_memberEquality because_Cache intEquality dependent_set_memberEquality functionExtensionality applyEquality lambdaEquality independent_pairFormation imageMemberEquality baseClosed hyp_replacement applyLambdaEquality

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    (rsum'(n;m;k.x[k])  \mmember{}  \mBbbR{})



Date html generated: 2017_10_03-AM-08_57_17
Last ObjectModification: 2017_09_20-PM-06_01_53

Theory : reals


Home Index