Nuprl Lemma : rsum'_wf
∀[n,m:ℤ]. ∀[x:{n..m + 1-} ⟶ ℝ].  (rsum'(n;m;k.x[k]) ∈ ℝ)
Proof
Definitions occuring in Statement : 
rsum': rsum'(n;m;k.x[k])
, 
real: ℝ
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real: ℝ
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
Lemmas referenced : 
int_seg_wf, 
real_wf, 
rsum'-eq-rsum, 
regular-int-seq_wf, 
nat_plus_wf, 
real-regular, 
rsum_wf, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
addEquality, 
natural_numberEquality, 
isect_memberEquality, 
because_Cache, 
intEquality, 
dependent_set_memberEquality, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    (rsum'(n;m;k.x[k])  \mmember{}  \mBbbR{})
Date html generated:
2017_10_03-AM-08_57_17
Last ObjectModification:
2017_09_20-PM-06_01_53
Theory : reals
Home
Index