Nuprl Lemma : rsum'-eq-rsum

[n,m:ℤ]. ∀[x:{n..m 1-} ⟶ ℝ].  (rsum'(n;m;k.x[k]) = Σ{x[k] n≤k≤m} ∈ (ℕ+ ⟶ ℤ))


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} rsum': rsum'(n;m;k.x[k]) real: int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rsum: Σ{x[k] n≤k≤m} rsum': rsum'(n;m;k.x[k]) uimplies: supposing a has-value: (a)↓ and: P ∧ Q prop: all: x:A. B[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k callbyvalueall: callbyvalueall has-valueall: has-valueall(a) implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b radd-list: radd-list(L) satisfiable_int_formula: satisfiable_int_formula(fmla) eq_int: (i =z j) subtype_rel: A ⊆B real: nat_plus: + accelerate: accelerate(k;f) nat: nequal: a ≠ b ∈  decidable: Dec(P) so_lambda: λ2x.t[x] iff: ⇐⇒ Q rev_implies:  Q subtract: m le: A ≤ B compose: g sum: Σ(f[x] x < k) sum_aux: sum_aux(k;v;i;x.f[x])
Lemmas referenced :  int_seg_wf real_wf value-type-has-value int-value-type subtract_wf valueall-type-has-valueall list_wf list-valueall-type real-valueall-type map_wf le_wf less_than_wf from-upto_wf evalall-reduce valueall-type-real-list lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot length-map length-from-upto satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf itermSubtract_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_formula_prop_wf int-to-real_wf nat_plus_wf eq_int_wf assert_of_eq_int nat_plus_properties intformeq_wf int_formula_prop_eq_lemma neg_assert_of_eq_int intformnot_wf int_formula_prop_not_lemma squash_wf true_wf sum_wf decidable__le intformle_wf int_formula_prop_le_lemma add-member-int_seg1 decidable__lt lelt_wf mul_nat_plus false_wf not-lt-2 not-equal-2 condition-implies-le add-associates minus-one-mul add-commutes minus-one-mul-top add-swap zero-add minus-add minus-minus add_functionality_wrt_le le-add-cancel2 itermMultiply_wf int_term_value_mul_lemma equal-wf-base int_subtype_base reg-seq-list-add-as-l_sum decidable__equal_int mul_bounds_1b iff_weakening_equal map-map l_sum-sum l_member_wf set_wf general_arith_equation1 nat_wf select-from-upto int_seg_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality addEquality natural_numberEquality sqequalRule isect_memberEquality axiomEquality because_Cache intEquality independent_isectElimination callbyvalueReduce setEquality productEquality lambdaEquality lambdaFormation setElimination rename applyEquality functionExtensionality dependent_set_memberEquality dependent_functionElimination unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination lessCases sqequalAxiom independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination dependent_pairFormation promote_hyp instantiate cumulativity int_eqEquality computeAll sqleReflexivity multiplyEquality universeEquality divideEquality minusEquality baseApply closedConclusion

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    (rsum'(n;m;k.x[k])  =  \mSigma{}\{x[k]  |  n\mleq{}k\mleq{}m\})



Date html generated: 2017_10_03-AM-08_57_06
Last ObjectModification: 2017_07_28-AM-07_37_16

Theory : reals


Home Index