Nuprl Lemma : rsum'-eq-rsum
∀[n,m:ℤ]. ∀[x:{n..m + 1-} ⟶ ℝ].  (rsum'(n;m;k.x[k]) = Σ{x[k] | n≤k≤m} ∈ (ℕ+ ⟶ ℤ))
Proof
Definitions occuring in Statement : 
rsum: Σ{x[k] | n≤k≤m}
, 
rsum': rsum'(n;m;k.x[k])
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rsum: Σ{x[k] | n≤k≤m}
, 
rsum': rsum'(n;m;k.x[k])
, 
uimplies: b supposing a
, 
has-value: (a)↓
, 
and: P ∧ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
callbyvalueall: callbyvalueall, 
has-valueall: has-valueall(a)
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
top: Top
, 
true: True
, 
squash: ↓T
, 
not: ¬A
, 
false: False
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
radd-list: radd-list(L)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
eq_int: (i =z j)
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
nat_plus: ℕ+
, 
accelerate: accelerate(k;f)
, 
nat: ℕ
, 
nequal: a ≠ b ∈ T 
, 
decidable: Dec(P)
, 
so_lambda: λ2x.t[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
le: A ≤ B
, 
compose: f o g
, 
sum: Σ(f[x] | x < k)
, 
sum_aux: sum_aux(k;v;i;x.f[x])
Lemmas referenced : 
int_seg_wf, 
real_wf, 
value-type-has-value, 
int-value-type, 
subtract_wf, 
valueall-type-has-valueall, 
list_wf, 
list-valueall-type, 
real-valueall-type, 
map_wf, 
le_wf, 
less_than_wf, 
from-upto_wf, 
evalall-reduce, 
valueall-type-real-list, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
length-map, 
length-from-upto, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
itermSubtract_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_wf, 
int-to-real_wf, 
nat_plus_wf, 
eq_int_wf, 
assert_of_eq_int, 
nat_plus_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
neg_assert_of_eq_int, 
intformnot_wf, 
int_formula_prop_not_lemma, 
squash_wf, 
true_wf, 
sum_wf, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
add-member-int_seg1, 
decidable__lt, 
lelt_wf, 
mul_nat_plus, 
false_wf, 
not-lt-2, 
not-equal-2, 
condition-implies-le, 
add-associates, 
minus-one-mul, 
add-commutes, 
minus-one-mul-top, 
add-swap, 
zero-add, 
minus-add, 
minus-minus, 
add_functionality_wrt_le, 
le-add-cancel2, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
equal-wf-base, 
int_subtype_base, 
reg-seq-list-add-as-l_sum, 
decidable__equal_int, 
mul_bounds_1b, 
iff_weakening_equal, 
map-map, 
l_sum-sum, 
l_member_wf, 
set_wf, 
general_arith_equation1, 
nat_wf, 
select-from-upto, 
int_seg_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
addEquality, 
natural_numberEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
intEquality, 
independent_isectElimination, 
callbyvalueReduce, 
setEquality, 
productEquality, 
lambdaEquality, 
lambdaFormation, 
setElimination, 
rename, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
lessCases, 
sqequalAxiom, 
independent_pairFormation, 
voidElimination, 
voidEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_functionElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
int_eqEquality, 
computeAll, 
sqleReflexivity, 
multiplyEquality, 
universeEquality, 
divideEquality, 
minusEquality, 
baseApply, 
closedConclusion
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    (rsum'(n;m;k.x[k])  =  \mSigma{}\{x[k]  |  n\mleq{}k\mleq{}m\})
Date html generated:
2017_10_03-AM-08_57_06
Last ObjectModification:
2017_07_28-AM-07_37_16
Theory : reals
Home
Index