Nuprl Lemma : select-from-upto

[n,m:ℤ]. ∀[k:ℕn].  ([n, m)[k] k)


Proof




Definitions occuring in Statement :  from-upto: [n, m) select: L[n] int_seg: {i..j-} uall: [x:A]. B[x] subtract: m add: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k from-upto: [n, m) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q select: L[n] nil: [] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) cons: [a b] has-value: (a)↓ subtype_rel: A ⊆B
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf subtract_wf le_wf subtract-1-ge-0 nat_wf int_seg_properties itermSubtract_wf int_term_value_subtract_lemma lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf stuck-spread istype-base intformnot_wf int_formula_prop_not_lemma decidable__equal_int int_subtype_base add-zero value-type-has-value int-value-type decidable__le itermAdd_wf int_term_value_add_lemma intformeq_wf int_formula_prop_eq_lemma decidable__lt select-cons-tl select_wf from-upto_wf length-from-upto satisfiable-full-omega-tt
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomSqEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  productElimination unionElimination equalityElimination equalityTransitivity equalitySymmetry Error :equalityIsType1,  promote_hyp instantiate cumulativity because_Cache baseClosed intEquality callbyvalueReduce addEquality Error :dependent_set_memberEquality_alt,  Error :productIsType,  applyEquality Error :isect_memberFormation_alt,  computeAll voidEquality isect_memberEquality lambdaEquality dependent_pairFormation dependent_set_memberEquality

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[k:\mBbbN{}m  -  n].    ([n,  m)[k]  \msim{}  n  +  k)



Date html generated: 2019_06_20-PM-01_34_11
Last ObjectModification: 2018_10_04-PM-02_28_32

Theory : list_1


Home Index