Nuprl Lemma : select-from-upto
∀[n,m:ℤ]. ∀[k:ℕm - n].  ([n, m)[k] ~ n + k)
Proof
Definitions occuring in Statement : 
from-upto: [n, m)
, 
select: L[n]
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
from-upto: [n, m)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
select: L[n]
, 
nil: []
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
cons: [a / b]
, 
has-value: (a)↓
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
int_seg_wf, 
subtract_wf, 
le_wf, 
subtract-1-ge-0, 
nat_wf, 
int_seg_properties, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
stuck-spread, 
istype-base, 
intformnot_wf, 
int_formula_prop_not_lemma, 
decidable__equal_int, 
int_subtype_base, 
add-zero, 
value-type-has-value, 
int-value-type, 
decidable__le, 
itermAdd_wf, 
int_term_value_add_lemma, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
decidable__lt, 
select-cons-tl, 
select_wf, 
from-upto_wf, 
length-from-upto, 
satisfiable-full-omega-tt
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :universeIsType, 
axiomSqEquality, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
productElimination, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :equalityIsType1, 
promote_hyp, 
instantiate, 
cumulativity, 
because_Cache, 
baseClosed, 
intEquality, 
callbyvalueReduce, 
addEquality, 
Error :dependent_set_memberEquality_alt, 
Error :productIsType, 
applyEquality, 
Error :isect_memberFormation_alt, 
computeAll, 
voidEquality, 
isect_memberEquality, 
lambdaEquality, 
dependent_pairFormation, 
dependent_set_memberEquality
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[k:\mBbbN{}m  -  n].    ([n,  m)[k]  \msim{}  n  +  k)
Date html generated:
2019_06_20-PM-01_34_11
Last ObjectModification:
2018_10_04-PM-02_28_32
Theory : list_1
Home
Index