Step * 1 2 2 1 1 1 of Lemma rv-circle-circle-lemma3'

.....assertion..... 
1. : ℝ^2
2. : ℝ^2
3. : ℝ^2
4. : ℝ^2
5. {p:ℝ^2| d(a;b) d(a;p)} 
6. {q:ℝ^2| d(c;d) d(c;q)} 
7. {x:ℝ^2| (d(c;p) d(c;x)) ∧ (c ≠ x ∧ x ≠ d ∧ c-x-d)))} 
8. {y:ℝ^2| (d(a;q) d(a;y)) ∧ (a ≠ y ∧ y ≠ b ∧ a-y-b)))} 
9. a ≠ c
10. d(c;p) d(c;i)
11. ¬(c ≠ i ∧ i ≠ d ∧ c-i-d))
12. d(a;q) d(a;o)
13. ¬(a ≠ o ∧ o ≠ b ∧ a-o-b))
14. ∀x,y,z:ℝ^2.  (d(x;y) d(x;z) ⇐⇒ ||z x|| d(x;y))
15. d(c;p) ≤ d(c;d)
16. d(a;q) ≤ d(a;b)
⊢ d(c;d)^2 ≤ d(a;b) d(c;a)^2
BY
((BLemma `rnexp-rleq` THEN Auto)
   THEN (InstLemma `real-vec-triangle-inequality` [⌜2⌝;⌜c⌝;⌜a⌝;⌜q⌝]⋅ THENA Auto)
   THEN (Assert d(c;d) d(c;q) BY
               Auto)
   THEN (RWO "-1" THENA Auto)) }

1
1. : ℝ^2
2. : ℝ^2
3. : ℝ^2
4. : ℝ^2
5. {p:ℝ^2| d(a;b) d(a;p)} 
6. {q:ℝ^2| d(c;d) d(c;q)} 
7. {x:ℝ^2| (d(c;p) d(c;x)) ∧ (c ≠ x ∧ x ≠ d ∧ c-x-d)))} 
8. {y:ℝ^2| (d(a;q) d(a;y)) ∧ (a ≠ y ∧ y ≠ b ∧ a-y-b)))} 
9. a ≠ c
10. d(c;p) d(c;i)
11. ¬(c ≠ i ∧ i ≠ d ∧ c-i-d))
12. d(a;q) d(a;o)
13. ¬(a ≠ o ∧ o ≠ b ∧ a-o-b))
14. ∀x,y,z:ℝ^2.  (d(x;y) d(x;z) ⇐⇒ ||z x|| d(x;y))
15. d(c;p) ≤ d(c;d)
16. d(a;q) ≤ d(a;b)
17. d(c;q) ≤ (d(c;a) d(a;q))
18. d(c;d) d(c;q)
⊢ d(c;q) ≤ (d(a;b) d(c;a))


Latex:


Latex:
.....assertion..... 
1.  a  :  \mBbbR{}\^{}2
2.  b  :  \mBbbR{}\^{}2
3.  c  :  \mBbbR{}\^{}2
4.  d  :  \mBbbR{}\^{}2
5.  p  :  \{p:\mBbbR{}\^{}2|  d(a;b)  =  d(a;p)\} 
6.  q  :  \{q:\mBbbR{}\^{}2|  d(c;d)  =  d(c;q)\} 
7.  i  :  \{x:\mBbbR{}\^{}2|  (d(c;p)  =  d(c;x))  \mwedge{}  (\mneg{}(c  \mneq{}  x  \mwedge{}  x  \mneq{}  d  \mwedge{}  (\mneg{}c-x-d)))\} 
8.  o  :  \{y:\mBbbR{}\^{}2|  (d(a;q)  =  d(a;y))  \mwedge{}  (\mneg{}(a  \mneq{}  y  \mwedge{}  y  \mneq{}  b  \mwedge{}  (\mneg{}a-y-b)))\} 
9.  a  \mneq{}  c
10.  d(c;p)  =  d(c;i)
11.  \mneg{}(c  \mneq{}  i  \mwedge{}  i  \mneq{}  d  \mwedge{}  (\mneg{}c-i-d))
12.  d(a;q)  =  d(a;o)
13.  \mneg{}(a  \mneq{}  o  \mwedge{}  o  \mneq{}  b  \mwedge{}  (\mneg{}a-o-b))
14.  \mforall{}x,y,z:\mBbbR{}\^{}2.    (d(x;y)  =  d(x;z)  \mLeftarrow{}{}\mRightarrow{}  ||z  -  x||  =  d(x;y))
15.  d(c;p)  \mleq{}  d(c;d)
16.  d(a;q)  \mleq{}  d(a;b)
\mvdash{}  d(c;d)\^{}2  \mleq{}  d(a;b)  +  d(c;a)\^{}2


By


Latex:
((BLemma  `rnexp-rleq`  THEN  Auto)
  THEN  (InstLemma  `real-vec-triangle-inequality`  [\mkleeneopen{}2\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}q\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  (Assert  d(c;d)  =  d(c;q)  BY
                          Auto)
  THEN  (RWO  "-1"  0  THENA  Auto))




Home Index