Nuprl Lemma : rv-extend-1

n:ℕ. ∀a,b:ℝ^n.  (a ≠  (∀s:{s:ℝr0 ≤ s} . ∃x:ℝ^n. ((d(b;x) s) ∧ ((r0 < s)  a-b-x))))


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b real-vec-dist: d(x;y) real-vec-between: a-b-c real-vec: ^n rleq: x ≤ y rless: x < y req: y int-to-real: r(n) real: nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q real-vec-sep: a ≠ b member: t ∈ T uall: [x:A]. B[x] prop: exists: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a rneq: x ≠ y or: P ∨ Q and: P ∧ Q cand: c∧ B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y) req_int_terms: t1 ≡ t2 false: False not: ¬A sq_stable: SqStable(P) squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q rge: x ≥ y rgt: x > y real-vec-between: a-b-c req-vec: req-vec(n;x;y) real-vec-mul: a*X real-vec-add: Y nat: real-vec: ^n

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b:\mBbbR{}\^{}n.    (a  \mneq{}  b  {}\mRightarrow{}  (\mforall{}s:\{s:\mBbbR{}|  r0  \mleq{}  s\}  .  \mexists{}x:\mBbbR{}\^{}n.  ((d(b;x)  =  s)  \mwedge{}  ((r0  <  s)  {}\mRightarrow{}  a-b-x))))



Date html generated: 2020_05_20-PM-00_50_51
Last ObjectModification: 2020_01_03-AM-00_24_17

Theory : reals


Home Index