Nuprl Lemma : rv-gt-dist

n:ℕ. ∀a,b,q:ℝ^n.  ((d(a;q) < d(a;b))  (∃w:ℝ^n. (a_w_b ∧ aw=aq ∧ w ≠ b)))


Proof




Definitions occuring in Statement :  rv-be: a_b_c real-vec-sep: a ≠ b rv-congruent: ab=cd real-vec-dist: d(x;y) real-vec: ^n rless: x < y nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: guard: {T} uimplies: supposing a rneq: x ≠ y or: P ∨ Q exists: x:A. B[x] and: P ∧ Q cand: c∧ B real-vec-sep: a ≠ b rless: x < y sq_exists: x:A [B[x]] iff: ⇐⇒ Q rev_implies:  Q top: Top uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y) req_int_terms: t1 ≡ t2 false: False not: ¬A real-vec-be: real-vec-be(n;a;b;c) squash: T true: True real-vec-mul: a*X real-vec-add: Y real-vec-sub: Y req-vec: req-vec(n;x;y) nat: real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B rv-be: a_b_c rv-congruent: ab=cd real-vec-dist: d(x;y) rat_term_to_real: rat_term_to_real(f;t) rtermVar: rtermVar(var) rat_term_ind: rat_term_ind pi1: fst(t) rtermMultiply: left "*" right rtermDivide: num "/" denom pi2: snd(t)

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,q:\mBbbR{}\^{}n.    ((d(a;q)  <  d(a;b))  {}\mRightarrow{}  (\mexists{}w:\mBbbR{}\^{}n.  (a\_w\_b  \mwedge{}  aw=aq  \mwedge{}  w  \mneq{}  b)))



Date html generated: 2020_05_20-PM-00_56_23
Last ObjectModification: 2019_12_11-PM-03_24_21

Theory : reals


Home Index