Step
*
2
1
1
of Lemma
rv-line-circle-0
1. n : ℕ
2. a : ℝ^n
3. b : ℝ^n
4. p : ℝ^n
5. q : ℝ^n
6. p ≠ q
7. d(a;p) ≤ d(a;b)
8. d(a;b) ≤ d(a;q)
9. u : {u:ℝ^n| ab=au}
10. ¬(q ≠ u ∧ u ≠ p ∧ (¬q-u-p))
11. v : {v:ℝ^n| ab=av}
12. real-vec-be(n;q;p;v)
13. (d(a;p) < d(a;b))
⇒ (q-p-v ∧ ((d(a;b) < d(a;q))
⇒ q-u-p))
14. (d(a;p) = d(a;b))
⇒ ((u ≠ v
⇒ ((req-vec(n;u;p) ∧ (r0 < p - a⋅q - p)) ∨ (req-vec(n;v;p) ∧ (p - a⋅q - p < r0))))
∧ (req-vec(n;u;v)
⇒ ((p - a⋅q - p = r0) ∧ req-vec(n;u;p))))
⊢ ∃v:ℝ^n [(ab=av
∧ (¬(q ≠ p ∧ p ≠ v ∧ (¬q-p-v)))
∧ ((d(a;p) < d(a;b))
⇒ (q-p-v ∧ ((d(a;b) < d(a;q))
⇒ q-u-p)))
∧ ((d(a;p) = d(a;b))
⇒ ((u ≠ v
⇒ ((req-vec(n;u;p) ∧ (r0 < p - a⋅q - p)) ∨ (req-vec(n;v;p) ∧ (p - a⋅q - p < r0))))
∧ (req-vec(n;u;v)
⇒ ((p - a⋅q - p = r0) ∧ req-vec(n;u;p))))))]
BY
{ ((RWO "rv-non-strict-between-iff<" (-3) THENA EAuto 1) THENM (D 0 With ⌜v⌝ THEN Auto)) }
1
.....rewrite subgoal.....
1. n : ℕ
2. a : ℝ^n
3. b : ℝ^n
4. p : ℝ^n
5. q : ℝ^n
6. p ≠ q
7. d(a;p) ≤ d(a;b)
8. d(a;b) ≤ d(a;q)
9. u : {u:ℝ^n| ab=au}
10. ¬(q ≠ u ∧ u ≠ p ∧ (¬q-u-p))
11. v : {v:ℝ^n| ab=av}
12. real-vec-be(n;q;p;v)
13. (d(a;p) < d(a;b))
⇒ (q-p-v ∧ ((d(a;b) < d(a;q))
⇒ q-u-p))
14. (d(a;p) = d(a;b))
⇒ ((u ≠ v
⇒ ((req-vec(n;u;p) ∧ (r0 < p - a⋅q - p)) ∨ (req-vec(n;v;p) ∧ (p - a⋅q - p < r0))))
∧ (req-vec(n;u;v)
⇒ ((p - a⋅q - p = r0) ∧ req-vec(n;u;p))))
⊢ q ≠ v
2
1. n : ℕ
2. a : ℝ^n
3. b : ℝ^n
4. p : ℝ^n
5. q : ℝ^n
6. p ≠ q
7. d(a;p) ≤ d(a;b)
8. d(a;b) ≤ d(a;q)
9. u : {u:ℝ^n| ab=au}
10. ¬(q ≠ u ∧ u ≠ p ∧ (¬q-u-p))
11. v : {v:ℝ^n| ab=av}
12. ¬(q ≠ p ∧ p ≠ v ∧ (¬q-p-v))
13. (d(a;p) < d(a;b))
⇒ (q-p-v ∧ ((d(a;b) < d(a;q))
⇒ q-u-p))
14. (d(a;p) = d(a;b))
⇒ ((u ≠ v
⇒ ((req-vec(n;u;p) ∧ (r0 < p - a⋅q - p)) ∨ (req-vec(n;v;p) ∧ (p - a⋅q - p < r0))))
∧ (req-vec(n;u;v)
⇒ ((p - a⋅q - p = r0) ∧ req-vec(n;u;p))))
⊢ ab=av
Latex:
Latex:
1. n : \mBbbN{}
2. a : \mBbbR{}\^{}n
3. b : \mBbbR{}\^{}n
4. p : \mBbbR{}\^{}n
5. q : \mBbbR{}\^{}n
6. p \mneq{} q
7. d(a;p) \mleq{} d(a;b)
8. d(a;b) \mleq{} d(a;q)
9. u : \{u:\mBbbR{}\^{}n| ab=au\}
10. \mneg{}(q \mneq{} u \mwedge{} u \mneq{} p \mwedge{} (\mneg{}q-u-p))
11. v : \{v:\mBbbR{}\^{}n| ab=av\}
12. real-vec-be(n;q;p;v)
13. (d(a;p) < d(a;b)) {}\mRightarrow{} (q-p-v \mwedge{} ((d(a;b) < d(a;q)) {}\mRightarrow{} q-u-p))
14. (d(a;p) = d(a;b))
{}\mRightarrow{} ((u \mneq{} v {}\mRightarrow{} ((req-vec(n;u;p) \mwedge{} (r0 < p - a\mcdot{}q - p)) \mvee{} (req-vec(n;v;p) \mwedge{} (p - a\mcdot{}q - p < r0))))
\mwedge{} (req-vec(n;u;v) {}\mRightarrow{} ((p - a\mcdot{}q - p = r0) \mwedge{} req-vec(n;u;p))))
\mvdash{} \mexists{}v:\mBbbR{}\^{}n [(ab=av
\mwedge{} (\mneg{}(q \mneq{} p \mwedge{} p \mneq{} v \mwedge{} (\mneg{}q-p-v)))
\mwedge{} ((d(a;p) < d(a;b)) {}\mRightarrow{} (q-p-v \mwedge{} ((d(a;b) < d(a;q)) {}\mRightarrow{} q-u-p)))
\mwedge{} ((d(a;p) = d(a;b))
{}\mRightarrow{} ((u \mneq{} v
{}\mRightarrow{} ((req-vec(n;u;p) \mwedge{} (r0 < p - a\mcdot{}q - p)) \mvee{} (req-vec(n;v;p) \mwedge{} (p - a\mcdot{}q - p < r0))))
\mwedge{} (req-vec(n;u;v) {}\mRightarrow{} ((p - a\mcdot{}q - p = r0) \mwedge{} req-vec(n;u;p))))))]
By
Latex:
((RWO "rv-non-strict-between-iff<" (-3) THENA EAuto 1) THENM (D 0 With \mkleeneopen{}v\mkleeneclose{} THEN Auto))
Home
Index