Nuprl Lemma : rv-line-circle-0

n:ℕ. ∀a,b,p,q:ℝ^n.
  (p ≠ q
   (d(a;p) ≤ d(a;b))
   (d(a;b) ≤ d(a;q))
   (∃u:{u:ℝ^n| ab=au ∧ (q ≠ u ∧ u ≠ p ∧ q-u-p)))} 
       (∃v:ℝ^n [(ab=av
               ∧ (q ≠ p ∧ p ≠ v ∧ q-p-v)))
               ∧ ((d(a;p) < d(a;b))  (q-p-v ∧ ((d(a;b) < d(a;q))  q-u-p)))
               ∧ ((d(a;p) d(a;b))
                  ((u ≠  ((req-vec(n;u;p) ∧ (r0 < a⋅p)) ∨ (req-vec(n;v;p) ∧ (p a⋅p < r0))))
                    ∧ (req-vec(n;u;v)  ((p a⋅r0) ∧ req-vec(n;u;p))))))])))


Proof




Definitions occuring in Statement :  rv-between: a-b-c real-vec-sep: a ≠ b rv-congruent: ab=cd real-vec-dist: d(x;y) dot-product: x⋅y real-vec-sub: Y req-vec: req-vec(n;x;y) real-vec: ^n rleq: x ≤ y rless: x < y req: y int-to-real: r(n) nat: all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: real-vec-dist: d(x;y) and: P ∧ Q cand: c∧ B uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) real-vec-sep: a ≠ b let: let nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A false: False rneq: x ≠ y or: P ∨ Q rless: x < y sq_exists: x:A [B[x]] sq_stable: SqStable(P) guard: {T} so_apply: x[s] so_lambda: λ2x.t[x] top: Top quadratic1: quadratic1(a;b;c) true: True squash: T less_than: a < b req_int_terms: t1 ≡ t2 rdiv: (x/y) nat_plus: + exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) ge: i ≥  rge: x ≥ y real-vec-add: Y real-vec-sub: Y req-vec: req-vec(n;x;y) real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k rv-congruent: ab=cd real-vec-be: real-vec-be(n;a;b;c) real-vec-mul: a*X quadratic2: quadratic2(a;b;c) rat_term_to_real: rat_term_to_real(f;t) rtermAdd: left "+" right rat_term_ind: rat_term_ind rtermMultiply: left "*" right rtermDivide: num "/" denom rtermMinus: rtermMinus(num) rtermVar: rtermVar(var) rtermSubtract: left "-" right rtermConstant: "const" pi1: fst(t) pi2: snd(t) real-vec-between: a-b-c rv-between: a-b-c hd: hd(l) eq_int: (i =z j) tl: tl(l) null: null(as) bor: p ∨bq even-int-list: even-int-list(L) btrue: tt bfalse: ff lt_int: i <j bnot: ¬bb le_int: i ≤j nonneg-monomial: nonneg-monomial(m) band: p ∧b q list_accum: list_accum rev-append: rev(as) bs itermConstant: "const" map: map(f;as) minus-poly: minus-poly(p) insert-int: insert-int(x;l) evalall: evalall(t) callbyvalueall: callbyvalueall eager-accum: eager-accum(x,a.f[x; a];y;l) merge-int-accum: merge-int-accum(as;bs) mul-monomials: mul-monomials(m1;m2) mul-mono-poly: mul-mono-poly(m;p) it: nil: [] cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L) cons: [a b] itermVar: vvar mul_ipoly: mul_ipoly(p;q) itermMultiply: left (*) right add-ipoly-prepend: add-ipoly-prepend(p;q;l) add_ipoly: add_ipoly(p;q) itermSubtract: left (-) right int_term_ind: int_term_ind int_term_to_ipoly: int_term_to_ipoly(t) list_ind: list_ind reduce: reduce(f;k;as) bl-all: (∀x∈L.P[x])_b nonneg-poly: nonneg-poly(p) ifthenelse: if then else fi  assert: b

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,p,q:\mBbbR{}\^{}n.
    (p  \mneq{}  q
    {}\mRightarrow{}  (d(a;p)  \mleq{}  d(a;b))
    {}\mRightarrow{}  (d(a;b)  \mleq{}  d(a;q))
    {}\mRightarrow{}  (\mexists{}u:\{u:\mBbbR{}\^{}n|  ab=au  \mwedge{}  (\mneg{}(q  \mneq{}  u  \mwedge{}  u  \mneq{}  p  \mwedge{}  (\mneg{}q-u-p)))\} 
              (\mexists{}v:\mBbbR{}\^{}n  [(ab=av
                              \mwedge{}  (\mneg{}(q  \mneq{}  p  \mwedge{}  p  \mneq{}  v  \mwedge{}  (\mneg{}q-p-v)))
                              \mwedge{}  ((d(a;p)  <  d(a;b))  {}\mRightarrow{}  (q-p-v  \mwedge{}  ((d(a;b)  <  d(a;q))  {}\mRightarrow{}  q-u-p)))
                              \mwedge{}  ((d(a;p)  =  d(a;b))
                                  {}\mRightarrow{}  ((u  \mneq{}  v
                                        {}\mRightarrow{}  ((req-vec(n;u;p)  \mwedge{}  (r0  <  p  -  a\mcdot{}q  -  p))
                                              \mvee{}  (req-vec(n;v;p)  \mwedge{}  (p  -  a\mcdot{}q  -  p  <  r0))))
                                        \mwedge{}  (req-vec(n;u;v)  {}\mRightarrow{}  ((p  -  a\mcdot{}q  -  p  =  r0)  \mwedge{}  req-vec(n;u;p))))))])))



Date html generated: 2020_05_20-PM-00_54_46
Last ObjectModification: 2020_01_06-AM-11_19_05

Theory : reals


Home Index