Step
*
1
1
of Lemma
rv-pos-angle-permute
1. n : ℕ
2. a : ℝ^n
3. b : ℝ^n
4. c : ℝ^n
5. |a - b⋅c - b| < (||a - b|| * ||c - b||)
6. |a - b⋅c - a| < (||a - b|| * ||c - a||)
⊢ |c - a⋅b - a| < (||c - a|| * ||b - a||)
BY
{ (((Assert ||b - a|| = ||a - b|| BY Auto) THEN (RWO "-1" 0 THENA Auto))
   THEN (Assert (||c - a|| * ||a - b||) = (||a - b|| * ||c - a||) BY
               Auto)
   THEN (RWO "-1" 0 THENA Auto)) }
1
1. n : ℕ
2. a : ℝ^n
3. b : ℝ^n
4. c : ℝ^n
5. |a - b⋅c - b| < (||a - b|| * ||c - b||)
6. |a - b⋅c - a| < (||a - b|| * ||c - a||)
7. ||b - a|| = ||a - b||
8. (||c - a|| * ||a - b||) = (||a - b|| * ||c - a||)
⊢ |c - a⋅b - a| < (||a - b|| * ||c - a||)
Latex:
Latex:
1.  n  :  \mBbbN{}
2.  a  :  \mBbbR{}\^{}n
3.  b  :  \mBbbR{}\^{}n
4.  c  :  \mBbbR{}\^{}n
5.  |a  -  b\mcdot{}c  -  b|  <  (||a  -  b||  *  ||c  -  b||)
6.  |a  -  b\mcdot{}c  -  a|  <  (||a  -  b||  *  ||c  -  a||)
\mvdash{}  |c  -  a\mcdot{}b  -  a|  <  (||c  -  a||  *  ||b  -  a||)
By
Latex:
(((Assert  ||b  -  a||  =  ||a  -  b||  BY  Auto)  THEN  (RWO  "-1"  0  THENA  Auto))
  THEN  (Assert  (||c  -  a||  *  ||a  -  b||)  =  (||a  -  b||  *  ||c  -  a||)  BY
                          Auto)
  THEN  (RWO  "-1"  0  THENA  Auto))
Home
Index