Nuprl Lemma : same-metric
∀[X:Type]. ∀[d:metric(X)]. ∀[d':X ⟶ X ⟶ ℝ].  d' ∈ metric(X) supposing ∀x,y:X.  ((d' x y) = (d x y))
Proof
Definitions occuring in Statement : 
metric: metric(X)
, 
req: x = y
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
metric: metric(X)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rleq_wf, 
radd_wf, 
req_wf, 
int-to-real_wf, 
real_wf, 
metric_wf, 
istype-universe, 
rleq_functionality, 
radd_functionality, 
req_functionality, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality_alt, 
hypothesisEquality, 
productElimination, 
lambdaFormation_alt, 
inhabitedIsType, 
universeIsType, 
independent_pairFormation, 
hypothesis, 
because_Cache, 
sqequalRule, 
productIsType, 
functionIsType, 
extract_by_obid, 
isectElimination, 
applyEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
instantiate, 
universeEquality, 
independent_isectElimination, 
dependent_functionElimination
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[d':X  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbR{}].
    d'  \mmember{}  metric(X)  supposing  \mforall{}x,y:X.    ((d'  x  y)  =  (d  x  y))
Date html generated:
2019_10_29-AM-10_51_33
Last ObjectModification:
2019_10_02-AM-09_33_27
Theory : reals
Home
Index