Nuprl Lemma : same-metric

[X:Type]. ∀[d:metric(X)]. ∀[d':X ⟶ X ⟶ ℝ].  d' ∈ metric(X) supposing ∀x,y:X.  ((d' y) (d y))


Proof




Definitions occuring in Statement :  metric: metric(X) req: y real: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a metric: metric(X) and: P ∧ Q cand: c∧ B all: x:A. B[x] prop: guard: {T} uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rleq_wf radd_wf req_wf int-to-real_wf real_wf metric_wf istype-universe rleq_functionality radd_functionality req_functionality req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt hypothesisEquality productElimination lambdaFormation_alt inhabitedIsType universeIsType independent_pairFormation hypothesis because_Cache sqequalRule productIsType functionIsType extract_by_obid isectElimination applyEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies instantiate universeEquality independent_isectElimination dependent_functionElimination

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[d':X  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbR{}].
    d'  \mmember{}  metric(X)  supposing  \mforall{}x,y:X.    ((d'  x  y)  =  (d  x  y))



Date html generated: 2019_10_29-AM-10_51_33
Last ObjectModification: 2019_10_02-AM-09_33_27

Theory : reals


Home Index