Nuprl Lemma : scale-metric-leq-iff

[X:Type]. ∀[d1,d2:metric(X)]. ∀[c:{c:ℝr0 < c} ].  (c*d1 ≤ d2 ⇐⇒ d1 ≤ (r1/c)*d2)


Proof




Definitions occuring in Statement :  metric-leq: d1 ≤ d2 scale-metric: c*d metric: metric(X) rdiv: (x/y) rless: x < y int-to-real: r(n) real: uall: [x:A]. B[x] iff: ⇐⇒ Q set: {x:A| B[x]}  natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q metric-leq: d1 ≤ d2 all: x:A. B[x] mdist: mdist(d;x;y) scale-metric: c*d subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a guard: {T} prop: rev_implies:  Q rneq: x ≠ y or: P ∨ Q sq_stable: SqStable(P) squash: T uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A rdiv: (x/y) req_int_terms: t1 ≡ t2 top: Top

Latex:
\mforall{}[X:Type].  \mforall{}[d1,d2:metric(X)].  \mforall{}[c:\{c:\mBbbR{}|  r0  <  c\}  ].    (c*d1  \mleq{}  d2  \mLeftarrow{}{}\mRightarrow{}  d1  \mleq{}  (r1/c)*d2)



Date html generated: 2020_05_20-AM-11_39_14
Last ObjectModification: 2020_01_06-PM-00_22_39

Theory : reals


Home Index