Step
*
1
of Lemma
seq-min-upper-property
1. k : ℕ
2. f : ℕ+ ⟶ ℤ
3. n : ℤ
4. 0 < n
5. ∀i:ℕ+n
(((i * (f seq-min-upper(k;n - 1;f))) - seq-min-upper(k;n - 1;f) * (f i)) ≤ ((2 * k)
* (seq-min-upper(k;n - 1;f) - i)))
6. i : ℕ+n + 1
⊢ ((i
* (f
if (n * (f seq-min-upper(k;n - 1;f))) + ((2 * k) * n) ≤z (seq-min-upper(k;n - 1;f) * (f n))
+ ((2 * k) * seq-min-upper(k;n - 1;f))
then seq-min-upper(k;n - 1;f)
else n
fi )) - if (n * (f seq-min-upper(k;n - 1;f))) + ((2 * k) * n) ≤z (seq-min-upper(k;n - 1;f) * (f n))
+ ((2 * k) * seq-min-upper(k;n - 1;f))
then seq-min-upper(k;n - 1;f)
else n
fi
* (f i)) ≤ ((2 * k)
* (if (n * (f seq-min-upper(k;n - 1;f))) + ((2 * k) * n) ≤z (seq-min-upper(k;n - 1;f) * (f n))
+ ((2 * k) * seq-min-upper(k;n - 1;f))
then seq-min-upper(k;n - 1;f)
else n
fi - i))
BY
{ ((Decide ⌜i = n ∈ ℤ⌝⋅ THENA Auto)
THENL [(HypSubst' (-1) 0 THEN AutoSplit THEN Auto); ((InstHyp [⌜i⌝] (-3)⋅ THENA Auto) THEN AutoSplit)]
) }
1
1. k : ℕ
2. f : ℕ+ ⟶ ℤ
3. n : ℤ
4. ¬(((n * (f seq-min-upper(k;n - 1;f))) + ((2 * k) * n)) ≤ ((seq-min-upper(k;n - 1;f) * (f n))
+ ((2 * k) * seq-min-upper(k;n - 1;f))))
5. 0 < n
6. ∀i:ℕ+n
(((i * (f seq-min-upper(k;n - 1;f))) - seq-min-upper(k;n - 1;f) * (f i)) ≤ ((2 * k)
* (seq-min-upper(k;n - 1;f) - i)))
7. i : ℕ+n + 1
8. ¬(i = n ∈ ℤ)
9. ((i * (f seq-min-upper(k;n - 1;f))) - seq-min-upper(k;n - 1;f) * (f i)) ≤ ((2 * k) * (seq-min-upper(k;n - 1;f) - i))
⊢ ((i * (f n)) - n * (f i)) ≤ ((2 * k) * (n - i))
Latex:
Latex:
1. k : \mBbbN{}
2. f : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
3. n : \mBbbZ{}
4. 0 < n
5. \mforall{}i:\mBbbN{}\msupplus{}n
(((i * (f seq-min-upper(k;n - 1;f))) - seq-min-upper(k;n - 1;f) * (f i)) \mleq{} ((2 * k)
* (seq-min-upper(k;n - 1;f) - i)))
6. i : \mBbbN{}\msupplus{}n + 1
\mvdash{} ((i
* (f
if (n * (f seq-min-upper(k;n - 1;f))) + ((2 * k) * n) \mleq{}z (seq-min-upper(k;n - 1;f) * (f n))
+ ((2 * k) * seq-min-upper(k;n - 1;f))
then seq-min-upper(k;n - 1;f)
else n
fi )) - if (n * (f seq-min-upper(k;n - 1;f))) + ((2 * k) * n) \mleq{}z (seq-min-upper(k;n - 1;f)
* (f n))
+ ((2 * k) * seq-min-upper(k;n - 1;f))
then seq-min-upper(k;n - 1;f)
else n
fi
* (f i)) \mleq{} ((2 * k)
* (if (n * (f seq-min-upper(k;n - 1;f))) + ((2 * k) * n) \mleq{}z (seq-min-upper(k;n - 1;f) * (f n))
+ ((2 * k) * seq-min-upper(k;n - 1;f))
then seq-min-upper(k;n - 1;f)
else n
fi - i))
By
Latex:
((Decide \mkleeneopen{}i = n\mkleeneclose{}\mcdot{} THENA Auto)
THENL [(HypSubst' (-1) 0 THEN AutoSplit THEN Auto)
; ((InstHyp [\mkleeneopen{}i\mkleeneclose{}] (-3)\mcdot{} THENA Auto) THEN AutoSplit)]
)
Home
Index