Nuprl Lemma : series-diverges-tail

x:ℕ ⟶ ℝ. ∀N:ℕ.  n.x[N n]↑  Σn.x[n]↑)


Proof




Definitions occuring in Statement :  series-diverges: Σn.x[n]↑ real: nat: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] add: m
Definitions unfolded in proof :  less_than: a < b le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} so_apply: x[s] so_lambda: λ2x.t[x] squash: T sq_stable: SqStable(P) cand: c∧ B prop: false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) ge: i ≥  nat_plus: + sq_exists: x:A [B[x]] rless: x < y uall: [x:A]. B[x] nat: and: P ∧ Q member: t ∈ T exists: x:A. B[x] diverges: n.x[n]↑ series-diverges: Σn.x[n]↑ implies:  Q all: x:A. B[x] guard: {T} sq_type: SQType(T) real: subtype_rel: A ⊆B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y pointwise-req: x[k] y[k] for k ∈ [n,m]

Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}N:\mBbbN{}.    (\mSigma{}n.x[N  +  n]\muparrow{}  {}\mRightarrow{}  \mSigma{}n.x[n]\muparrow{})



Date html generated: 2020_05_20-AM-11_20_56
Last ObjectModification: 2019_12_28-AM-11_07_14

Theory : reals


Home Index