Step
*
1
of Lemma
series-diverges-trivially
1. z : ℝ
2. r0 < z
3. x : ℕ ⟶ ℝ
4. ∀k:ℕ. ∃n:ℕ. ((k ≤ n) ∧ (z ≤ |x[n]|))
5. r0 < z
6. k : ℕ
7. n : ℕ
8. (k + 1) ≤ n
9. z ≤ |x[n]|
10. k ≤ n
11. k ≤ (n - 1)
⊢ z ≤ |Σ{x[i] | 0≤i≤n} - Σ{x[i] | 0≤i≤n - 1}|
BY
{ ((RW (AddrC [2;1;1] (LemmaC `rsum_unroll`)) 0 THENA Auto) THEN AutoSplit THEN nRNorm 0 THEN Auto)⋅ }
Latex:
Latex:
1. z : \mBbbR{}
2. r0 < z
3. x : \mBbbN{} {}\mrightarrow{} \mBbbR{}
4. \mforall{}k:\mBbbN{}. \mexists{}n:\mBbbN{}. ((k \mleq{} n) \mwedge{} (z \mleq{} |x[n]|))
5. r0 < z
6. k : \mBbbN{}
7. n : \mBbbN{}
8. (k + 1) \mleq{} n
9. z \mleq{} |x[n]|
10. k \mleq{} n
11. k \mleq{} (n - 1)
\mvdash{} z \mleq{} |\mSigma{}\{x[i] | 0\mleq{}i\mleq{}n\} - \mSigma{}\{x[i] | 0\mleq{}i\mleq{}n - 1\}|
By
Latex:
((RW (AddrC [2;1;1] (LemmaC `rsum\_unroll`)) 0 THENA Auto) THEN AutoSplit THEN nRNorm 0 THEN Auto)\mcdot{}
Home
Index