Step
*
1
of Lemma
simple-converges-to
.....assertion.....
1. x : ℕ ⟶ ℝ
2. a : ℝ
3. c : ℝ
4. ∀n:ℕ. (|(x n) - a| ≤ ((r1/r(2^n)) * c))
⊢ ∀k:ℕ+. (∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ (((r1/r(2^n)) * c) ≤ (r1/r(k)))))])
BY
{ ((InstLemma `r-archimedean` [⌜c⌝]⋅ THENA Auto) THEN (ExRepD THENA Auto) THEN RenameVar `B' (-4)) }
1
1. x : ℕ ⟶ ℝ
2. a : ℝ
3. c : ℝ
4. ∀n:ℕ. (|(x n) - a| ≤ ((r1/r(2^n)) * c))
5. B : ℕ
6. r(-B) ≤ c
7. c ≤ r(B)
8. k : ℕ+
⊢ ∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ (((r1/r(2^n)) * c) ≤ (r1/r(k)))))]
Latex:
Latex:
.....assertion.....
1. x : \mBbbN{} {}\mrightarrow{} \mBbbR{}
2. a : \mBbbR{}
3. c : \mBbbR{}
4. \mforall{}n:\mBbbN{}. (|(x n) - a| \mleq{} ((r1/r(2\^{}n)) * c))
\mvdash{} \mforall{}k:\mBbbN{}\msupplus{}. (\mexists{}N:\mBbbN{} [(\mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} (((r1/r(2\^{}n)) * c) \mleq{} (r1/r(k)))))])
By
Latex:
((InstLemma `r-archimedean` [\mkleeneopen{}c\mkleeneclose{}]\mcdot{} THENA Auto) THEN (ExRepD THENA Auto) THEN RenameVar `B' (-4))
Home
Index