Step
*
1
1
of Lemma
simple-converges-to
1. x : ℕ ⟶ ℝ
2. a : ℝ
3. c : ℝ
4. ∀n:ℕ. (|(x n) - a| ≤ ((r1/r(2^n)) * c))
5. B : ℕ
6. r(-B) ≤ c
7. c ≤ r(B)
8. k : ℕ+
⊢ ∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ (((r1/r(2^n)) * c) ≤ (r1/r(k)))))]
BY
{ Assert ⌜∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ ((k * B) ≤ 2^n)))]⌝⋅ }
1
.....assertion.....
1. x : ℕ ⟶ ℝ
2. a : ℝ
3. c : ℝ
4. ∀n:ℕ. (|(x n) - a| ≤ ((r1/r(2^n)) * c))
5. B : ℕ
6. r(-B) ≤ c
7. c ≤ r(B)
8. k : ℕ+
⊢ ∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ ((k * B) ≤ 2^n)))]
2
1. x : ℕ ⟶ ℝ
2. a : ℝ
3. c : ℝ
4. ∀n:ℕ. (|(x n) - a| ≤ ((r1/r(2^n)) * c))
5. B : ℕ
6. r(-B) ≤ c
7. c ≤ r(B)
8. k : ℕ+
9. ∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ ((k * B) ≤ 2^n)))]
⊢ ∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ (((r1/r(2^n)) * c) ≤ (r1/r(k)))))]
Latex:
Latex:
1. x : \mBbbN{} {}\mrightarrow{} \mBbbR{}
2. a : \mBbbR{}
3. c : \mBbbR{}
4. \mforall{}n:\mBbbN{}. (|(x n) - a| \mleq{} ((r1/r(2\^{}n)) * c))
5. B : \mBbbN{}
6. r(-B) \mleq{} c
7. c \mleq{} r(B)
8. k : \mBbbN{}\msupplus{}
\mvdash{} \mexists{}N:\mBbbN{} [(\mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} (((r1/r(2\^{}n)) * c) \mleq{} (r1/r(k)))))]
By
Latex:
Assert \mkleeneopen{}\mexists{}N:\mBbbN{} [(\mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} ((k * B) \mleq{} 2\^{}n)))]\mkleeneclose{}\mcdot{}
Home
Index