Step
*
2
2
1
1
of Lemma
sine-poly-approx-1
1. x : {x:ℝ| (r0 ≤ x) ∧ (x ≤ r1)}
2. k : ℕ
3. e : {e:ℝ| r0 < e}
4. k1 : ℕ+
5. (r1/r(k1)) < e
6. N : ℕ
7. ∀i:ℕ. ((N ≤ i)
⇒ (|Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤i} - sine(x)| ≤ (r1/r(k1))))
8. |sine(x) - Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤N}| ≤ (r1/r(k1))
9. ¬(N ≤ k)
10. n : ℕ
11. 0 ≤ n
12. r0 ≤ (x^(2 * n) + 1)/((2 * n) + 1)!
13. M : ℕ+
14. ((2 * n) + 1)! = M ∈ ℕ+
15. A : ℕ+
16. ((2 * n) + 3) = A ∈ ℕ+
17. B : ℕ+
18. ((2 * n) + 2) = B ∈ ℕ+
⊢ (x^(2 * (n + 1)) + 1)/A * B * M ≤ (x^(2 * n) + 1)/M
BY
{ ((Subst' (2 * (n + 1)) + 1 ~ ((2 * n) + 1) + 2 0 THENA Auto) THEN (GenConcl ⌜((2 * n) + 1) = i ∈ ℕ⌝⋅ THENA Auto)) }
1
1. x : {x:ℝ| (r0 ≤ x) ∧ (x ≤ r1)}
2. k : ℕ
3. e : {e:ℝ| r0 < e}
4. k1 : ℕ+
5. (r1/r(k1)) < e
6. N : ℕ
7. ∀i:ℕ. ((N ≤ i)
⇒ (|Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤i} - sine(x)| ≤ (r1/r(k1))))
8. |sine(x) - Σ{-1^i * (x^(2 * i) + 1)/((2 * i) + 1)! | 0≤i≤N}| ≤ (r1/r(k1))
9. ¬(N ≤ k)
10. n : ℕ
11. 0 ≤ n
12. r0 ≤ (x^(2 * n) + 1)/((2 * n) + 1)!
13. M : ℕ+
14. ((2 * n) + 1)! = M ∈ ℕ+
15. A : ℕ+
16. ((2 * n) + 3) = A ∈ ℕ+
17. B : ℕ+
18. ((2 * n) + 2) = B ∈ ℕ+
19. i : ℕ
20. ((2 * n) + 1) = i ∈ ℕ
⊢ (x^i + 2)/A * B * M ≤ (x^i)/M
Latex:
Latex:
1. x : \{x:\mBbbR{}| (r0 \mleq{} x) \mwedge{} (x \mleq{} r1)\}
2. k : \mBbbN{}
3. e : \{e:\mBbbR{}| r0 < e\}
4. k1 : \mBbbN{}\msupplus{}
5. (r1/r(k1)) < e
6. N : \mBbbN{}
7. \mforall{}i:\mBbbN{}. ((N \mleq{} i) {}\mRightarrow{} (|\mSigma{}\{-1\^{}i * (x\^{}(2 * i) + 1)/((2 * i) + 1)! | 0\mleq{}i\mleq{}i\} - sine(x)| \mleq{} (r1/r(k1))))
8. |sine(x) - \mSigma{}\{-1\^{}i * (x\^{}(2 * i) + 1)/((2 * i) + 1)! | 0\mleq{}i\mleq{}N\}| \mleq{} (r1/r(k1))
9. \mneg{}(N \mleq{} k)
10. n : \mBbbN{}
11. 0 \mleq{} n
12. r0 \mleq{} (x\^{}(2 * n) + 1)/((2 * n) + 1)!
13. M : \mBbbN{}\msupplus{}
14. ((2 * n) + 1)! = M
15. A : \mBbbN{}\msupplus{}
16. ((2 * n) + 3) = A
17. B : \mBbbN{}\msupplus{}
18. ((2 * n) + 2) = B
\mvdash{} (x\^{}(2 * (n + 1)) + 1)/A * B * M \mleq{} (x\^{}(2 * n) + 1)/M
By
Latex:
((Subst' (2 * (n + 1)) + 1 \msim{} ((2 * n) + 1) + 2 0 THENA Auto)
THEN (GenConcl \mkleeneopen{}((2 * n) + 1) = i\mkleeneclose{}\mcdot{} THENA Auto)
)
Home
Index