Nuprl Lemma : sq_stable__ifun

[I:Interval]. ∀[f:I ⟶ℝ].  SqStable(ifun(f;I)) supposing icompact(I)


Proof




Definitions occuring in Statement :  ifun: ifun(f;I) icompact: icompact(I) rfun: I ⟶ℝ interval: Interval sq_stable: SqStable(P) uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T prop: ifun: ifun(f;I) icompact: icompact(I) and: P ∧ Q
Lemmas referenced :  icompact_wf rfun_wf interval_wf sq_stable__real-fun left-endpoint_wf right-endpoint_wf icompact-is-rccint
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesis hypothesisEquality independent_isectElimination productElimination sqequalRule

Latex:
\mforall{}[I:Interval].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].    SqStable(ifun(f;I))  supposing  icompact(I)



Date html generated: 2016_10_26-AM-09_48_09
Last ObjectModification: 2016_08_18-PM-02_55_07

Theory : reals


Home Index