Nuprl Lemma : sq_stable__is-mfun

[X,Y:Type]. ∀[d:metric(X)]. ∀[d':metric(Y)]. ∀[f:X ⟶ Y].  SqStable(f:FUN(X;Y))


Proof




Definitions occuring in Statement :  is-mfun: f:FUN(X;Y) metric: metric(X) sq_stable: SqStable(P) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q sq_stable: SqStable(P) is-mfun: f:FUN(X;Y) all: x:A. B[x] meq: x ≡ y metric: metric(X) so_apply: x[s]
Lemmas referenced :  sq_stable__from_stable is-mfun_wf stable__is-mfun req_witness int-to-real_wf metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination sqequalRule lambdaEquality_alt dependent_functionElimination applyEquality setElimination rename natural_numberEquality functionIsTypeImplies inhabitedIsType functionIsType universeIsType isect_memberEquality_alt because_Cache isectIsTypeImplies instantiate universeEquality

Latex:
\mforall{}[X,Y:Type].  \mforall{}[d:metric(X)].  \mforall{}[d':metric(Y)].  \mforall{}[f:X  {}\mrightarrow{}  Y].    SqStable(f:FUN(X;Y))



Date html generated: 2019_10_29-AM-11_16_18
Last ObjectModification: 2019_10_02-AM-09_56_31

Theory : reals


Home Index