Nuprl Lemma : stable__is-mfun

[X,Y:Type]. ∀[d:metric(X)]. ∀[d':metric(Y)]. ∀[f:X ⟶ Y].  Stable{f:FUN(X;Y)}


Proof




Definitions occuring in Statement :  is-mfun: f:FUN(X;Y) metric: metric(X) stable: Stable{P} uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T is-mfun: f:FUN(X;Y) meq: x ≡ y so_lambda: λ2x.t[x] prop: all: x:A. B[x] implies:  Q metric: metric(X) so_apply: x[s] stable: Stable{P} uimplies: supposing a
Lemmas referenced :  stable__all req_wf int-to-real_wf stable_req req_witness metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality_alt functionEquality applyEquality setElimination rename hypothesis natural_numberEquality universeIsType independent_functionElimination lambdaFormation_alt because_Cache inhabitedIsType isect_memberEquality_alt dependent_functionElimination functionIsTypeImplies isectIsTypeImplies functionIsType instantiate universeEquality

Latex:
\mforall{}[X,Y:Type].  \mforall{}[d:metric(X)].  \mforall{}[d':metric(Y)].  \mforall{}[f:X  {}\mrightarrow{}  Y].    Stable\{f:FUN(X;Y)\}



Date html generated: 2019_10_29-AM-11_15_58
Last ObjectModification: 2019_10_02-AM-09_56_14

Theory : reals


Home Index