Nuprl Lemma : square-is-one
∀x:ℝ. (x^2 = r1
⇐⇒ (x = r1) ∨ (x = -(r1)))
Proof
Definitions occuring in Statement :
rnexp: x^k1
,
req: x = y
,
rminus: -(x)
,
int-to-real: r(n)
,
real: ℝ
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
or: P ∨ Q
,
natural_number: $n
Definitions unfolded in proof :
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
not: ¬A
,
false: False
,
le: A ≤ B
,
nat: ℕ
,
true: True
,
less_than': less_than'(a;b)
,
squash: ↓T
,
less_than: a < b
,
or: P ∨ Q
,
guard: {T}
,
rneq: x ≠ y
,
rev_implies: P
⇐ Q
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
implies: P
⇒ Q
,
and: P ∧ Q
,
iff: P
⇐⇒ Q
,
all: ∀x:A. B[x]
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
Lemmas referenced :
iff_wf,
all_wf,
le_wf,
false_wf,
rnexp_wf,
rless_wf,
rless-int,
squares-req,
real_wf,
rminus_wf,
int-to-real_wf,
req_wf,
or_wf,
rnexp-one,
req_weakening,
req_functionality
Rules used in proof :
cut,
lambdaEquality,
dependent_set_memberEquality,
baseClosed,
imageMemberEquality,
inrFormation,
sqequalRule,
independent_functionElimination,
dependent_functionElimination,
impliesFunctionality,
productElimination,
allFunctionality,
addLevel,
because_Cache,
natural_numberEquality,
hypothesisEquality,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
introduction,
hypothesis,
independent_pairFormation,
lambdaFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution,
promote_hyp,
independent_isectElimination
Latex:
\mforall{}x:\mBbbR{}. (x\^{}2 = r1 \mLeftarrow{}{}\mRightarrow{} (x = r1) \mvee{} (x = -(r1)))
Date html generated:
2017_10_03-AM-08_50_30
Last ObjectModification:
2017_08_02-PM-03_10_31
Theory : reals
Home
Index