Nuprl Lemma : strong-subtype-discrete-type

[A,B:Type].  (discrete-type(A)) supposing (discrete-type(B) and strong-subtype(A;B))


Proof




Definitions occuring in Statement :  discrete-type: discrete-type(T) strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a discrete-type: discrete-type(T) all: x:A. B[x] subtype_rel: A ⊆B strong-subtype: strong-subtype(A;B) cand: c∧ B implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] guard: {T}
Lemmas referenced :  req_wf real_wf all_wf equal_wf discrete-type_wf strong-subtype_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lambdaFormation hypothesis dependent_functionElimination thin functionExtensionality applyEquality hypothesisEquality productElimination sqequalRule because_Cache independent_functionElimination extract_by_obid isectElimination lambdaEquality functionEquality cumulativity axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry universeEquality dependent_set_memberEquality dependent_pairFormation

Latex:
\mforall{}[A,B:Type].    (discrete-type(A))  supposing  (discrete-type(B)  and  strong-subtype(A;B))



Date html generated: 2018_05_22-PM-02_13_27
Last ObjectModification: 2017_10_30-AM-00_37_14

Theory : reals


Home Index