Nuprl Lemma : subinterval-trivial
∀I:Interval. I ⊆ [left-endpoint(I), right-endpoint(I)]  supposing icompact(I)
Proof
Definitions occuring in Statement : 
subinterval: I ⊆ J , 
icompact: icompact(I), 
rccint: [l, u], 
right-endpoint: right-endpoint(I), 
left-endpoint: left-endpoint(I), 
interval: Interval, 
uimplies: b supposing a, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
false: False, 
cand: A c∧ B, 
and: P ∧ Q, 
bfalse: ff, 
bor: p ∨bq, 
assert: ↑b, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bnot: ¬bb, 
isl: isl(x), 
i-closed: i-closed(I), 
i-finite: i-finite(I), 
i-member: r ∈ I, 
pi2: snd(t), 
pi1: fst(t), 
outl: outl(x), 
endpoints: endpoints(I), 
top: Top, 
left-endpoint: left-endpoint(I), 
right-endpoint: right-endpoint(I), 
icompact: icompact(I), 
interval: Interval, 
subinterval: I ⊆ J , 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
squash: ↓T, 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x]
Lemmas referenced : 
real_wf, 
i-member_wf, 
member_rccint_lemma, 
interval_wf, 
icompact_wf, 
sq_stable__icompact
Rules used in proof : 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
unionElimination, 
productElimination, 
isectElimination, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
independent_functionElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}I:Interval.  I  \msubseteq{}  [left-endpoint(I),  right-endpoint(I)]    supposing  icompact(I)
Date html generated:
2018_07_29-AM-09_40_17
Last ObjectModification:
2018_07_02-PM-02_25_40
Theory : reals
Home
Index