Nuprl Lemma : sup-iff-closure

[A:Set(ℝ)]. ∀x:ℝ(sup(A) ⇐⇒ A ≤ x ∧ x ∈ closure(A))


Proof




Definitions occuring in Statement :  member-closure: y ∈ closure(A) sup: sup(A) b upper-bound: A ≤ b rset: Set(ℝ) real: uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q
Definitions unfolded in proof :  subtype_rel: A ⊆B rset: Set(ℝ) so_apply: x[s] so_lambda: λ2x.t[x] rev_implies:  Q exists: x:A. B[x] prop: uimplies: supposing a le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y upper-bound: A ≤ b member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] uall: [x:A]. B[x] sup: sup(A) b member-closure: y ∈ closure(A) top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A decidable: Dec(P) or: P ∨ Q guard: {T} rneq: x ≠ y nat_plus: + pi1: fst(t) rset-member: x ∈ A cand: c∧ B ge: i ≥  nat: sq_exists: x:A [B[x]] converges-to: lim n→∞.x[n] y rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) rless: x < y req_int_terms: t1 ≡ t2 rdiv: (x/y) rge: x ≥ y squash: T sq_stable: SqStable(P) real:

Latex:
\mforall{}[A:Set(\mBbbR{})].  \mforall{}x:\mBbbR{}.  (sup(A)  =  x  \mLeftarrow{}{}\mRightarrow{}  A  \mleq{}  x  \mwedge{}  x  \mmember{}  closure(A))



Date html generated: 2020_05_20-AM-11_28_35
Last ObjectModification: 2020_03_19-PM-01_18_44

Theory : reals


Home Index