Step
*
1
of Lemma
sup-iff-closure
1. [A] : Set(ℝ)
2. x : ℝ
3. A ≤ x
4. ∀e:ℝ. ((r0 < e)
⇒ (∃x@0:ℝ. ((x@0 ∈ A) ∧ ((x - e) < x@0))))
⊢ ∃x@0:ℕ ⟶ ℝ. (lim n→∞.x@0[n] = x ∧ (∀n:ℕ. (A x@0[n])))
BY
{ (Assert ⌜∀n:ℕ+. ∃z:ℝ. ((z ∈ A) ∧ ((x - (r1/r(n))) < z))⌝⋅ THENA Auto) }
1
1. [A] : Set(ℝ)
2. x : ℝ
3. A ≤ x
4. ∀e:ℝ. ((r0 < e)
⇒ (∃x@0:ℝ. ((x@0 ∈ A) ∧ ((x - e) < x@0))))
5. ∀n:ℕ+. ∃z:ℝ. ((z ∈ A) ∧ ((x - (r1/r(n))) < z))
⊢ ∃x@0:ℕ ⟶ ℝ. (lim n→∞.x@0[n] = x ∧ (∀n:ℕ. (A x@0[n])))
Latex:
Latex:
1. [A] : Set(\mBbbR{})
2. x : \mBbbR{}
3. A \mleq{} x
4. \mforall{}e:\mBbbR{}. ((r0 < e) {}\mRightarrow{} (\mexists{}x@0:\mBbbR{}. ((x@0 \mmember{} A) \mwedge{} ((x - e) < x@0))))
\mvdash{} \mexists{}x@0:\mBbbN{} {}\mrightarrow{} \mBbbR{}. (lim n\mrightarrow{}\minfty{}.x@0[n] = x \mwedge{} (\mforall{}n:\mBbbN{}. (A x@0[n])))
By
Latex:
(Assert \mkleeneopen{}\mforall{}n:\mBbbN{}\msupplus{}. \mexists{}z:\mBbbR{}. ((z \mmember{} A) \mwedge{} ((x - (r1/r(n))) < z))\mkleeneclose{}\mcdot{} THENA Auto)
Home
Index