Nuprl Lemma : sup-range-no-mc

sup-range is Bishop's theorem that the range of continuous function
has supremum. To apply that theorem we need modulus of continuity for f.

Since we can prove Brouwer's theorem real-continuity1
 that all functions on proper interval are continuous,
we can prove this version of the theorem that does not require 
modulus of continuity.

We have to take some care to handle the general case where the interval
may not be proper.

The constructive content of this theorem will be terribly inefficient
since it will first construct modulus of continuity (using bar recursion).
But, the constructive content of the original theorem of Bishop was already
very inefficient. We should think of the supremum as the "specification" of
(well defined) real number, that one may be able to compute efficiently 
by other means.


I:{I:Interval| icompact(I)} . ∀f:{f:I ⟶ℝifun(f;I)} .  ∃y:ℝsup(f(x)(x∈I)) y


Proof




Definitions occuring in Statement :  ifun: ifun(f;I) rrange: f[x](x∈I) icompact: icompact(I) r-ap: f(x) rfun: I ⟶ℝ interval: Interval sup: sup(A) b real: all: x:A. B[x] exists: x:A. B[x] set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q sq_stable: SqStable(P) squash: T uall: [x:A]. B[x] uimplies: supposing a prop:
Lemmas referenced :  sup-range ifun-continuous sq_stable__icompact rfun_wf ifun_wf interval_wf icompact_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality setElimination rename because_Cache hypothesis independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination setIsType universeIsType isectElimination independent_isectElimination

Latex:
\mforall{}I:\{I:Interval|  icompact(I)\}  .  \mforall{}f:\{f:I  {}\mrightarrow{}\mBbbR{}|  ifun(f;I)\}  .    \mexists{}y:\mBbbR{}.  sup(f(x)(x\mmember{}I))  =  y



Date html generated: 2019_10_30-AM-07_44_20
Last ObjectModification: 2019_10_10-AM-10_19_46

Theory : reals


Home Index