Step
*
2
1
1
of Lemma
triangular-reciprocal-series-sum
.....antecedent.....
1. lim n→∞.r(2) - (r(2)/r(n + 2)) = r(2)
2. ∀i:ℕ. (1 ≤ t(i + 1))
3. ∀i:ℕ. (¬(t(i + 1) = 0 ∈ ℤ))
4. n : ℕ
⊢ (r1/r(t(k + 1))) = (r(2)/r(k + 1)) + (r(-2)/r(k + 2)) for k ∈ [0,n]
BY
{ (D 0 THEN Auto) }
1
1. lim n→∞.r(2) - (r(2)/r(n + 2)) = r(2)
2. ∀i:ℕ. (1 ≤ t(i + 1))
3. ∀i:ℕ. (¬(t(i + 1) = 0 ∈ ℤ))
4. n : ℕ
5. k : ℤ
6. 0 ≤ k
7. k ≤ n
⊢ (r1/r(t(k + 1))) = ((r(2)/r(k + 1)) + (r(-2)/r(k + 2)))
Latex:
Latex:
.....antecedent.....
1. lim n\mrightarrow{}\minfty{}.r(2) - (r(2)/r(n + 2)) = r(2)
2. \mforall{}i:\mBbbN{}. (1 \mleq{} t(i + 1))
3. \mforall{}i:\mBbbN{}. (\mneg{}(t(i + 1) = 0))
4. n : \mBbbN{}
\mvdash{} (r1/r(t(k + 1))) = (r(2)/r(k + 1)) + (r(-2)/r(k + 2)) for k \mmember{} [0,n]
By
Latex:
(D 0 THEN Auto)
Home
Index