Step
*
2
1
2
1
of Lemma
triangular-reciprocal-series-sum
1. lim n→∞.r(2) - (r(2)/r(n + 2)) = r(2)
2. ∀i:ℕ. (1 ≤ t(i + 1))
3. ∀i:ℕ. (¬(t(i + 1) = 0 ∈ ℤ))
4. n : ℕ
5. Σ{(r1/r(t(k + 1))) | 0≤k≤n} = Σ{(r(2)/r(k + 1)) + (r(-2)/r(k + 2)) | 0≤k≤n}
⊢ (r(2) - (r(2)/r(n + 2))) = (Σ{(r(2)/r(i + 1)) | 0≤i≤n} + Σ{(r(-2)/r(i + 2)) | 0≤i≤n})
BY
{ ((RW (AddrC [2;1] (LemmaC `rsum-split-first`)) 0 THEN Auto)
THEN RW (AddrC [2;2] (LemmaC `rsum-split-last`)) 0
THEN Auto) }
1
1. lim n→∞.r(2) - (r(2)/r(n + 2)) = r(2)
2. ∀i:ℕ. (1 ≤ t(i + 1))
3. ∀i:ℕ. (¬(t(i + 1) = 0 ∈ ℤ))
4. n : ℕ
5. Σ{(r1/r(t(k + 1))) | 0≤k≤n} = Σ{(r(2)/r(k + 1)) + (r(-2)/r(k + 2)) | 0≤k≤n}
⊢ (r(2) - (r(2)/r(n + 2)))
= (((r(2)/r(0 + 1)) + Σ{(r(2)/r(i + 1)) | 0 + 1≤i≤n}) + Σ{(r(-2)/r(i + 2)) | 0≤i≤n - 1} + (r(-2)/r(n + 2)))
Latex:
Latex:
1. lim n\mrightarrow{}\minfty{}.r(2) - (r(2)/r(n + 2)) = r(2)
2. \mforall{}i:\mBbbN{}. (1 \mleq{} t(i + 1))
3. \mforall{}i:\mBbbN{}. (\mneg{}(t(i + 1) = 0))
4. n : \mBbbN{}
5. \mSigma{}\{(r1/r(t(k + 1))) | 0\mleq{}k\mleq{}n\} = \mSigma{}\{(r(2)/r(k + 1)) + (r(-2)/r(k + 2)) | 0\mleq{}k\mleq{}n\}
\mvdash{} (r(2) - (r(2)/r(n + 2))) = (\mSigma{}\{(r(2)/r(i + 1)) | 0\mleq{}i\mleq{}n\} + \mSigma{}\{(r(-2)/r(i + 2)) | 0\mleq{}i\mleq{}n\})
By
Latex:
((RW (AddrC [2;1] (LemmaC `rsum-split-first`)) 0 THEN Auto)
THEN RW (AddrC [2;2] (LemmaC `rsum-split-last`)) 0
THEN Auto)
Home
Index