Nuprl Lemma : unit-interval-fan_wf
∀[f:ℕ ⟶ 𝔹]. ∀[n:ℕ].  (unit-interval-fan(f;n) ∈ ℤ × ℤ)
Proof
Definitions occuring in Statement : 
unit-interval-fan: unit-interval-fan(f;n), 
nat: ℕ, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
unit-interval-fan: unit-interval-fan(f;n), 
subtype_rel: A ⊆r B, 
nat: ℕ, 
uimplies: b supposing a, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
all: ∀x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
has-value: (a)↓, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b
Lemmas referenced : 
primrec_wf, 
nat_wf, 
int_seg_subtype_nat, 
false_wf, 
bool_wf, 
eqtt_to_assert, 
value-type-has-value, 
int-value-type, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
intEquality, 
because_Cache, 
hypothesisEquality, 
independent_pairEquality, 
natural_numberEquality, 
lambdaEquality, 
productElimination, 
applyEquality, 
functionExtensionality, 
hypothesis, 
setElimination, 
rename, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
callbyvalueReduce, 
addEquality, 
multiplyEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
axiomEquality, 
isect_memberEquality, 
functionEquality
Latex:
\mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[n:\mBbbN{}].    (unit-interval-fan(f;n)  \mmember{}  \mBbbZ{}  \mtimes{}  \mBbbZ{})
 Date html generated: 
2017_10_03-AM-09_48_31
 Last ObjectModification: 
2017_07_28-AM-08_00_34
Theory : reals
Home
Index