Nuprl Lemma : weak-continuity-principle-real-double
∀x:ℝ. ∀F,H:ℝ ⟶ 𝔹. ∀G:n:ℕ+ ⟶ {y:ℝ| x = y ∈ (ℕ+n ⟶ ℤ)} .  (∃n:{ℕ+| (F x = F (G n) ∧ H x = H (G n))})
Proof
Definitions occuring in Statement : 
real: ℝ, 
int_seg: {i..j-}, 
nat_plus: ℕ+, 
bool: 𝔹, 
all: ∀x:A. B[x], 
sq_exists: ∃x:{A| B[x]}, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
nat_plus: ℕ+, 
real: ℝ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
less_than: a < b, 
squash: ↓T, 
true: True, 
sq_exists: ∃x:{A| B[x]}, 
cand: A c∧ B, 
guard: {T}, 
iff: P ⇐⇒ Q
Lemmas referenced : 
nat_plus_wf, 
real_wf, 
equal_wf, 
int_seg_wf, 
subtype_rel_dep_function, 
int_seg_subtype_nat_plus, 
false_wf, 
subtype_rel_self, 
bool_wf, 
WCPD_wf, 
regularize-k-regular, 
less_than_wf, 
regularize_wf, 
regular-int-seq_wf, 
subtype_rel_sets, 
set_wf, 
squash_wf, 
true_wf, 
regularize-real, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
functionEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
setEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
intEquality, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
independent_pairFormation, 
dependent_functionElimination, 
functionExtensionality, 
dependent_set_memberEquality, 
imageMemberEquality, 
baseClosed, 
productEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
dependent_set_memberFormation, 
productElimination, 
equalityUniverse, 
levelHypothesis, 
imageElimination, 
universeEquality
Latex:
\mforall{}x:\mBbbR{}.  \mforall{}F,H:\mBbbR{}  {}\mrightarrow{}  \mBbbB{}.  \mforall{}G:n:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \{y:\mBbbR{}|  x  =  y\}  .    (\mexists{}n:\{\mBbbN{}\msupplus{}|  (F  x  =  F  (G  n)  \mwedge{}  H  x  =  H  (G  n))\})
Date html generated:
2017_10_03-AM-09_09_22
Last ObjectModification:
2017_09_12-PM-02_20_05
Theory : reals
Home
Index