Nuprl Lemma : weak-continuity-principle-real-nat
∀x:ℝ. ∀F:ℝ ⟶ ℕ. ∀G:n:ℕ+ ⟶ {y:ℝ| x = y ∈ (ℕ+n ⟶ ℤ)} .  (∃n:{ℕ+| ((F x) = (F (G n)) ∈ ℕ)})
Proof
Definitions occuring in Statement : 
real: ℝ
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
real: ℝ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
exists: ∃x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
Lemmas referenced : 
weak-continuity-principle-nat+-int-nat, 
real_wf, 
regularize-k-regular, 
less_than_wf, 
regularize_wf, 
nat_plus_wf, 
regular-int-seq_wf, 
subtype_rel_sets, 
equal_wf, 
int_seg_wf, 
subtype_rel_dep_function, 
int_seg_subtype_nat_plus, 
false_wf, 
subtype_rel_self, 
nat_wf, 
exists_wf, 
squash_wf, 
true_wf, 
regularize-real, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
isectElimination, 
functionEquality, 
because_Cache, 
intEquality, 
setElimination, 
rename, 
independent_isectElimination, 
setEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
universeEquality, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}x:\mBbbR{}.  \mforall{}F:\mBbbR{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}G:n:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \{y:\mBbbR{}|  x  =  y\}  .    (\mexists{}n:\{\mBbbN{}\msupplus{}|  ((F  x)  =  (F  (G  n)))\})
Date html generated:
2017_10_03-AM-09_09_33
Last ObjectModification:
2017_09_11-PM-05_03_50
Theory : reals
Home
Index